scispace - formally typeset
Search or ask a question
Topic

Exciton

About: Exciton is a research topic. Over the lifetime, 31603 publications have been published within this topic receiving 810642 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The resonant excitons give rise to a prominent peak in the absorption spectrum near 4.5 eV with a different line shape and significantly redshifted peak position from those of an absorption peak arising from interband transitions in an independent quasiparticle picture.
Abstract: We present first-principles calculations of many-electron effects on the optical response of graphene, bilayer graphene, and graphite employing the GW-Bethe Salpeter equation approach We find that resonant excitons are formed in these two-dimensional semimetals The resonant excitons give rise to a prominent peak in the absorption spectrum near 45 eV with a different line shape and significantly redshifted peak position from those of an absorption peak arising from interband transitions in an independent quasiparticle picture In the infrared regime, our calculated optical absorbance per graphene layer is approximately a constant, 24%, in agreement with recent experiments; additional low frequency features are found for bilayer graphene because of band structure effects

584 citations

Journal ArticleDOI
TL;DR: The enhanced excited state decay process for NCs coupled to rough metal substrates effectively competes with the Auger relaxation process, allowing us to observe both charged and neutral exciton emission from these NC quantum dots.
Abstract: The fluorescence behavior of single CdSe(ZnS) core-shell nanocrystal (NC) quantum dots is dramatically affected by electromagnetic interactions with a rough metal film. Observed changes include a fivefold increase in the observed fluorescence intensity of single NCs, a striking reduction in their fluorescence blinking behavior, complete conversion of the emission polarization to linear, and single NC exciton lifetimes that are >10(3) times faster. The enhanced excited state decay process for NCs coupled to rough metal substrates effectively competes with the Auger relaxation process, allowing us to observe both charged and neutral exciton emission from these NC quantum dots.

582 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied how changes in the structural features of poly(3-hexylthiophene (P3HT) polymers affect exciton dissociation processes and concluded that excitons in disordered regions between crystalline and amorphous phases dissociate extrinsically with yield and spatial distribution.
Abstract: The optoelectronic properties of macromolecular semiconductors depend fundamentally on their solid-state microstructure and phase morphology. Hence, it is of central importance to manipulate—from the outset—the molecular arrangement and packing of this special class of polymers from the nano- to the micrometer scale when they are integrated in thin film devices such as photovoltaic cells, transistors or light-emitting diodes, for example. One effective strategy for this purpose is to vary their molecular weight. The reason for this is that materials of different weight-average molecular weight (Mw) lead to different microstructures. Polymers of low Mw form unconnected, extended-chain crystals because of their non-entangled nature. As a result, a polycrystalline, one-phase morphology is obtained. In contrast, high-Mw materials, in which average chain lengths are longer than the length between entanglements, form two-phase morphologies comprised of crystalline moieties embedded in largely un-ordered (amorphous) regions. Here, we discuss how changes in these structural features affect exciton dissociation processes. We utilise neat regioregular poly(3-hexylthiophene) (P3HT) of varying Mw as a model system and apply time-resolved photoluminescence (PL) spectroscopy to probe the electronic landscape in a range of P3HT thin-film architectures. We find that at 10 K, PL originating from recombination of long-lived charge pairs decays over microsecond timescales. Tellingly, both the amplitude and decay-rate distribution depend strongly on Mw. In films with dominant one-phase, chain-extended microstructures, the delayed PL is suppressed as a result of a diminished yield of photoinduced charges. Its decay is significantly slower than in two-phase microstructures. We therefore conclude that excitons in disordered regions between crystalline and amorphous phases dissociate extrinsically with yield and spatial distribution that depend intimately upon microstructure, in agreement with previous work [Paquin et al., Phys. Rev. Lett., 2011, 106, 197401]. We note, however, that independent of Mw, the delayed-PL lineshape due to charge recombination is representative of that in low-Mw microstructures. We thus hypothesize that charge recombination at these low temperatures—and likely also charge generation—occur in torsionally disordered chains forming more strongly coupled photophysical aggregates than those in the steady-state ensemble, producing a delayed PL lineshape reminiscent of that in paraffinic morphologies at steady state.

580 citations

Journal ArticleDOI
TL;DR: This work directly targets the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system and rationalizes these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs.
Abstract: The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.

579 citations

Journal ArticleDOI
TL;DR: An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small and depend significantly on temperature because of associated changes in the dielectric function.
Abstract: Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms.

578 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
96% related
Thin film
275.5K papers, 4.5M citations
92% related
Magnetization
107.8K papers, 1.9M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Amorphous solid
117K papers, 2.2M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,269
20222,623
20211,045
20201,157
20191,096
20181,057