scispace - formally typeset
Search or ask a question
Topic

Exciton

About: Exciton is a research topic. Over the lifetime, 31603 publications have been published within this topic receiving 810642 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the binding energies of single-walled carbon nanotubes with diameters between 6.8 and 9.4 were determined by ab initio calculations, based on photoluminescence excitation experiments.
Abstract: Excitonic effects in the linear and nonlinear optical properties of single-walled carbon nanotubes are manifested by photoluminescence excitation experiments and ab initio calculations. One- and two-photon spectra showed a series of exciton states; their energy splitting is the fingerprint of excitonic interactions in carbon nanotubes. By ab initio calculations we determine the energies, wave functions, and symmetries of the excitonic states. Combining experiment and theory we find binding energies of $0.3\char21{}0.4\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ for nanotubes with diameters between 6.8 and $9.0\phantom{\rule{0.3em}{0ex}}\mathrm{\AA{}}$.

471 citations

Journal ArticleDOI
TL;DR: In this article, a review on the photophysical processes associated with the formation of triplet states and their decay, as well as the energy levels and energy transfer processes of the triplet spin states are presented.
Abstract: Today's technology is not possible without optoelectronic devices such as light-emitting diodes, transistors and solar cells. These basic units of modern electronic appliances may be made not only from traditional inorganic semiconductors, but also from organic semiconductors, i.e. hydrocarbon molecules that combine semiconducting properties with some mechanical properties such as easy processability and flexibility. The weak van der Waals forces that bind the molecules to a solid imply a low dielectric constant, so that coulomb and exchange interactions between electrons are significant. As a result, photoexcitation or electrical excitation results in strongly bound electron–hole pairs, so-called excitons. Depending on the relative orientation of the electron and hole spin, the exciton may be of a overall singlet or triplet spin state. While the fluorescent singlet state has been investigated intensively since the first reports of organic electroluminescence, research into the properties of the phosphorescent triplet state has intensified mainly during the last decade. In this review we give an overview on the photophysical processes associated with the formation of triplet states and their decay, as well as the energy levels and energy transfer processes of triplet states. We aim to give a careful introduction for those new to this particular research area as well as to highlight some of the current research issues and intriguing questions for those familiar with the field. The main focus of this review is on molecular assemblies and polymer films, though relevant work on molecular crystals is also included where it assists in forming a larger picture.

471 citations

Journal ArticleDOI
08 Jun 2007-Science
TL;DR: Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy, providing highly efficient sensing of local chemical and physical perturbations.
Abstract: Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changed in discrete steps after exposure to acid, base, or diazonium reactants. The steps were uncorrelated in space and time and reflected the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes revealed an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visited about 10,000 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations.

471 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature behavior of various photoluminescence (PL) transitions observed in undoped, n-and p-doped GaN in the 9-300 K range is discussed.
Abstract: This work discusses the temperature behavior of the various photoluminescence (PL) transitions observed in undoped, n- and p-doped GaN in the 9-300 K range. Samples grown using different techniques have been assessed. When possible, simple rate equations are used to describe the quenching of the transitions observed, in order to get a better insight on the mechanism involved. In undoped GaN, the temperature dependence of band edge excitonic lines is well described by assuming that the A exciton population is the leading term in the 50-300 K range. The activation energy for free exciton luminescence quenching is of the order of the A rydberg, suggesting that free hole release leads to nonradiative recombination. In slightly p-doped samples, the luminescence is dominated by acceptor related transitions, whose intensity is shown to be governed by free hole release. For high Mg doping, the luminescence at room temperature is dominated by blue PL in the 2.8-2.9 eV range, whose quenching activation energy is in the 60-80 meV range. We also discuss the temperature dependence of PL transitions near 3.4 eV, related to extended structural defects. (C) 1999 American Institute of Physics. [S0021-8979(99)05619-4].

469 citations

Journal ArticleDOI
10 Sep 2018
TL;DR: In this paper, the properties of transition metal dichalcogenide semiconductors have been examined in depth, including bright, dark, localized and interlayer excitons.
Abstract: Two-dimensional group-VI transition metal dichalcogenide semiconductors, such as MoS2, WSe2, and others, exhibit strong light-matter coupling and possess direct band gaps in the infrared and visible spectral regimes, making them potentially interesting candidates for various applications in optics and optoelectronics. Here, we review their optical and optoelectronic properties with emphasis on exciton physics and devices. As excitons are tightly bound in these materials and dominate the optical response even at room-temperature, their properties are examined in depth in the first part of this article. We discuss the remarkably versatile excitonic landscape, including bright, dark, localized and interlayer excitons. In the second part, we provide an overview on the progress in optoelectronic device applications, such as electrically driven light emitters, photovoltaic solar cells, photodetectors, and opto-valleytronic devices, again bearing in mind the prominent role of excitonic effects. We conclude with a brief discussion on challenges that remain to be addressed to exploit the full potential of transition metal dichalcogenide semiconductors in possible exciton-based applications.

465 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
96% related
Thin film
275.5K papers, 4.5M citations
92% related
Magnetization
107.8K papers, 1.9M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Amorphous solid
117K papers, 2.2M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,269
20222,623
20211,045
20201,157
20191,096
20181,057