scispace - formally typeset
Search or ask a question
Topic

Exciton

About: Exciton is a research topic. Over the lifetime, 31603 publications have been published within this topic receiving 810642 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The spin dynamics in self-organized InAs/GaAs quantum dots by time-resolved photoluminescence performed under strictly resonant excitation demonstrates that the carrier spins are totally frozen on the exciton lifetime scale.
Abstract: We have studied the spin dynamics in self-organized InAs/GaAs quantum dots by time-resolved photoluminescence performed under strictly resonant excitation. At low temperature, we observe strictly no decay of both the linear and the circular luminescence polarization. This demonstrates that the carrier spins are totally frozen on the exciton lifetime scale.

361 citations

Journal ArticleDOI
TL;DR: Here it is realized and confirmed that a synthetic superlattice of monolayer molybdenum disulphide forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei.
Abstract: The isolation of the two-dimensional semiconductor molybdenum disulphide introduced a new optically active material possessing a band gap that can be facilely tuned via elastic strain. As an atomically thin membrane with exceptional strength, monolayer molybdenum disulphide subjected to biaxial strain can embed wide band gap variations overlapping the visible light spectrum, with calculations showing the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. Here we realize and confirm this ‘artificial atom’ concept via capillary-pressureinduced nanoindentation of monolayer molybdenum disulphide from a tailored nanopattern, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funnelling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. Such twodimensional semiconductors with spatially textured band gaps represent a new class of materials, which may find applications in next-generation optoelectronics or photovoltaics.

360 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the organic layer thickness on short-circuit photocurrent spectra and efficiency is investigated in heterojunction photovoltaic cells with the electron donor materials poly(p-phenylenevinylene) (PPV) and Cu-phthalocyanine (CuPc), respectively, together with C60 as electron acceptor material.
Abstract: The influence of the organic layer thickness on short-circuit photocurrent spectra and efficiency is investigated in heterojunction photovoltaic cells with the electron donor materials poly(p-phenylenevinylene) (PPV) and Cu-phthalocyanine (CuPc), respectively, together with C60 as electron acceptor material. The main process of photocurrent generation after light absorption, exciton generation, and exciton diffusion in the bulk of the absorbing material is given by the exciton dissociation at the donor–acceptor interface. We determined a strong dependence of the optimum layer thickness of the absorbing material on the exciton diffusion length by systematically varying the layer thickness of the electron donor material. Additionally, a significant photocurrent contribution occurred due to light absorption and exciton generation in the C60 layer with a subsequent hole transfer to PPV, respectively, CuPc at the dissociation interface. Using a simple rate equation for the exciton density we estimated the exci...

359 citations

Journal ArticleDOI
TL;DR: In this article, a fine excited state modulation was carried out to reach a golden combination of the high PL efficiency locally emissive (LE) component and the high exciton utilizing charge transfer (CT) component in one excited state.
Abstract: Excited state characters and components play a decisive role in photoluminescence (PL) and electroluminescence (EL) properties of organic light-emitting materials (OLEDS). Charge-transfer (CT) state is beneficial to enhance the singlet exciton utilizations in fluorescent OLEDs by an activated reverse intersystem crossing process, due to the minimized singlet and triplet energy splitting in CT excitons. However, the dominant CT component in the emissive state significantly reduces the PL efficiency in such materials. Here, the strategy is to carry out a fine excited state modulation, aiming to reach a golden combination of the high PL efficiency locally emissive (LE) component and the high exciton utilizing CT component in one excited state. As a result, a quasi-equivalent hybridization of LE and CT components is obtained in the emissive state upon the addition of only an extra phenyl ring in the newly synthesized material 4-[2-(4′-diphenylamino-biphenyl-4-yl)-phenanthro[9,10-d]imidazol-1-yl]-benzonitrile (TBPMCN), and the nondoped OLED of TBPMCN exhibited a record-setting performance: a pure blue emission with a Commission Internationale de L'Eclairage coordinate of (0.16, 0.16), a high external quantum efficiency of 7.8%, and a high yield of singlet exciton of 97% without delayed fluorescence phenomenon. The excited state modulation could be a practical way to design low-cost, high-efficiency fluorescent OLED materials.

358 citations

Book
01 Jan 2010
TL;DR: In this paper, the authors present a detailed analysis of linear optical properties close to the fundamental Absorption Edge of the ZnO crystal structure and the influence of external fields.
Abstract: Crystal Structure, Chemical Binding, and Lattice Properties.- Growth.- Band Structure.- Electrical Conductivity and Doping.- Intrinsic Linear Optical Properties Close to the Fundamental Absorption Edge.- Bound Exciton Complexes.- Influence of External Fields.- Deep Centres in ZnO.- Magnetic Properties.- Nonlinear Optics, High Density Effects and Stimulated Emission.- Dynamic Processes.- Past, Present and Future Applications.- Conclusion and Outlook.

357 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
96% related
Thin film
275.5K papers, 4.5M citations
92% related
Magnetization
107.8K papers, 1.9M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Amorphous solid
117K papers, 2.2M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,269
20222,623
20211,045
20201,157
20191,096
20181,057