scispace - formally typeset
Search or ask a question
Topic

Exciton

About: Exciton is a research topic. Over the lifetime, 31603 publications have been published within this topic receiving 810642 citations.


Papers
More filters
Journal ArticleDOI
01 Oct 2019-Nature
TL;DR: In this article, the authors studied electroluminescence in two-dimensional atomic double layers of transition metal chalcogenides and showed that the interlayer tunnelling current depends only on the exciton density.
Abstract: A Bose–Einstein condensate is the ground state of a dilute gas of bosons, such as atoms cooled to temperatures close to absolute zero1. With much smaller mass, excitons (bound electron–hole pairs) are expected to condense at considerably higher temperatures2–7. Two-dimensional van der Waals semiconductors with very strong exciton binding are ideal systems for the study of high-temperature exciton condensation. Here we study electrically generated interlayer excitons in MoSe2–WSe2 atomic double layers with a density of up to 1012 excitons per square centimetre. The interlayer tunnelling current depends only on the exciton density, which is indicative of correlated electron–hole pair tunnelling8. Strong electroluminescence arises when a hole tunnels from WSe2 to recombine with an electron in MoSe2. We observe a critical threshold dependence of the electroluminescence intensity on exciton density, accompanied by super-Poissonian photon statistics near the threshold, and a large electroluminescence enhancement with a narrow peak at equal electron and hole densities. The phenomenon persists above 100 kelvin, which is consistent with the predicted critical condensation temperature9–12. Our study provides evidence for interlayer exciton condensation in two-dimensional atomic double layers and opens up opportunities for exploring condensate-based optoelectronics and exciton-mediated high-temperature superconductivity13. Condensation of interlayer excitons at temperatures above 100 kelvin is demonstrated in a van der Waals heterostructure consisting of two-dimensional atomic double layers of transition metal chalcogenides.

316 citations

Journal ArticleDOI
TL;DR: Insight is provided into the control and ultimately the tunability of the exciton diffusion length inorganic systems, which is crucial for the management of energy transport in a wide range of important organic electronic devices.
Abstract: One of the most fundamental properties of both organic and inorganic semiconductors is charge mobility. It has been unambiguously shown that the mobility in both of these materials systems is strongly linked to the degree of long range order—thatis,moreextendedcrystallinityleadstoalargercharge mobility, which ultimately determines such extrinsic properties as seriesresistance andresponse tocurrentand optical pulses. An equally fundamental property for organic semiconductors is the molecular excited state-, or exciton-, diffusion length which characterizes energy transport within these more correlated solids. While it has been predicted that exciton transport should also be linked to the extent of crystalline order, to our knowledge nosuchdependencehasyetbeenestablished.Here,weaccurately measure the exciton diffusion length of the archetypal organic semiconductor, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and clearly show its relationship to thin-film crystal morphology. As in the case of charge mobility, we show that the exciton transport diffusion length is a monotonic function of the extent of crystalline order. This study provides insight into the control and ultimately the tunability of the exciton diffusion lengthinorganic systems, whichiscrucial forthemanagementof energy transport in a wide range of important organic electronic devices.

314 citations

Journal ArticleDOI
TL;DR: In this article, the binding energy of an n−type and Zn doped p−type Gax In1−xAs /InP (0.44
Abstract: Optical, crystallographic, and transport properties of nominally undoped n‐type and Zn doped p‐type Gax In1−xAs /InP (0.44

314 citations

Journal ArticleDOI
TL;DR: The structural, morphological and optical properties of AB(Br(1-x)Cl(x))3 (where, A = CH3NH3(+), B = Pb(2+) and x = 0 to 1) perovskite semiconductor are reported and it is shown that the lattice constant varies linearly with the fractional chlorine content satisfying Vegards law.
Abstract: We report on the structural, morphological and optical properties of AB(Br1–xClx)3 (where, A = CH3NH3+, B = Pb2+ and x = 0 to 1) perovskite semiconductor and their successful demonstration in green and blue emissive perovskite light emitting diodes at room temperature. The bandgap of perovskite thin film is tuned from 2.42 to 3.16 eV. The onset of optical absorption is dominated by excitonic effects. The coulomb field of the exciton influences the absorption at the band edge. Hence, it is necessary to explicitly account for the enhancement of the absorption through the Sommerfield factor. This enables us to correctly extract the exciton binding energy and the electronic bandgap. We also show that the lattice constant varies linearly with the fractional chlorine content satisfying Vegards law.

314 citations

Journal ArticleDOI
TL;DR: It is shown that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled.
Abstract: Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.

314 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
96% related
Thin film
275.5K papers, 4.5M citations
92% related
Magnetization
107.8K papers, 1.9M citations
91% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Amorphous solid
117K papers, 2.2M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,269
20222,623
20211,045
20201,157
20191,096
20181,057