scispace - formally typeset
Search or ask a question
Topic

Exergy efficiency

About: Exergy efficiency is a research topic. Over the lifetime, 7485 publications have been published within this topic receiving 175609 citations.


Papers
More filters
Book
28 Nov 1995
TL;DR: In this article, the authors present an overview of thermal system design using thermodynamics, modeling, and design analysis, including exergy analysis, energy analysis, and economic analysis.
Abstract: Introduction to Thermal System Design Thermodynamics, Modeling, and Design Analysis Exergy Analysis Heat Transfer, Modeling, and Design Analysis Applications with Heat and Fluid Flow Applications with Thermodynamics and Heat and Fluid Flow Economic Analysis Thermoeconomic Analysis and Evaluation Thermoeconomic Optimization Appendices Index

3,050 citations

Book
30 Apr 1988
TL;DR: In this article, the authors present an overview of the second law of thermodynamics and its application in the context of a gas turbine power plant and evaluate the entropy of the system.
Abstract: 1 Getting Started: Introductory Concepts and Definitions. 1.1 Using Thermodynamics. 1.2 Defining Systems. 1.3 Describing Systems and Their Behavior. 1.4 Measuring Mass, Length, Time, and Force. 1.5 Specific Volume. 1.6 Pressure. 1.7 Temperature. Chapter Summary and Study Guide. 2 Energy and the First Law of Thermodynamics. 2.1 Reviewing Mechanical Concepts of Energy. 2.2 Broadening Our Understanding of Work. 2.3 Broadening Our Understanding of Energy. 2.4 Energy Transfer by Heat. 2.5 Energy Accounting: Energy Balance for Closed Systems. 2.6 Energy Analysis of Cycles. Chapter Summary and Study Guide. 3 Evaluating Properties. 3.1 Getting Started. Evaluating Properties: General Considerations. 3.2 p-v-T Relation. 3.3 Studying Phase Change. 3.4 Retrieving Thermodynamic Properties. 3.5 Evaluating Pressure, Specific Volume, and Temperature. 3.6 Evaluating Specific Internal Energy and Enthalpy. 3.7 Evaluating Properties Using Computer Software. 3.8 Applying the Energy Balance Using Property Tables and Software. Chapter Summary and Study Guide. 4 Control Volume Analysis Using Energy. 4.1 Conservation of Mass for a Control Volume. 4.2 Forms of the Mass Rate Balance. 4.3 Applications of the Mass Rate Balance. 4.4 Conservation of Energy for a Control Volume. Chapter Summary and Study Guide. 5 The Second Law of Thermodynamics. 5.1 Introducing the Second Law. 5.2 Statements of the Second Law. 5.3 Identifying Irreversibilities. 5.4 Interpreting the Kelvin-Planck Statement. 5.5 Applying the Second Law to Thermodynamic Cycles. 5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs. Chapter Summary and Study Guide. 6 Using Entropy. 6.1 Entropy-A System Property. 6.2 Retrieving Entropy Data. 6.3 Introducing the T dS Equations. 6.4 Entropy Change of an Incompressible Substance. 6.5 Entropy Change of an Ideal Gas. 6.6 Entropy Change in Internally Reversible Processes of Closed Systems. 6.7 Entropy Balance for Closed Systems. 6.8 Directionality of Processes. 6.9 Entropy Rate Balance for Control Volumes. Steady-State Flow Processes. Chapter Summary and Study Guide. 7 Exergy Analysis. 7.1 Introducing Exergy. 7.2 Conceptualizing Exergy. 7.3 Exergy of a System. 7.4 Closed System Exergy Balance. 7.5 Exergy Rate Balance for Control Volumes at Steady State. 7.6 Exergetic (Second Law) Efficiency. 7.7 Thermoeconomics. Chapter Summary and Study Guide. 8 Vapor Power Systems. 8.1 Modeling Vapor Power Systems. 8.2 Analyzing Vapor Power Systems-Rankine Cycle. 8.3 Improving Performance-Superheat and Reheat. 8.4 Improving Performance-Regenerative Vapor Power Cycle. 8.5 Other Vapor Cycle Aspects. 8.6 Case Study: Exergy Accounting of a Vapor Power Plant. Chapter Summary and Study Guide. 9 Gas Power Systems. Internal Combustion Engines. 9.1 Introducing Engine Terminology. 9.2 Air-Standard Otto Cycle. 9.3 Air-Standard Diesel Cycle. 9.4 Air-Standard Dual Cycle. Gas Turbine Power Plants. 9.5 Modeling Gas Turbine Power Plants. 9.6 Air-Standard Brayton Cycle. 9.7 Regenerative Gas Turbines. 9.8 Regenerative Gas Turbines with Reheat and Intercooling. 9.9 Gas Turbines for Aircraft Propulsion. 9.10 Combined Gas Turbine-Vapor Power Cycle. Chapter Summary and Study Guide. 10 Refrigeration and Heat Pump Systems. 10.1 Vapor Refrigeration Systems. 10.2 Analyzing Vapor-Compression Refrigeration Systems. 10.3 Refrigerant Properties. 10.4 Cascade and Multistage Vapor-Compression Systems. 10.5 Absorption Refrigeration. 10.6 Heat Pump Systems. 10.7 Gas Refrigeration Systems. Chapter Summary and Study Guide. 11 Thermodynamic Relations. 11.1 Using Equations of State. 11.2 Important Mathematical Relations. 11.3 Developing Property Relations. 11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy. 11.5 Other Thermodynamic Relations. 11.6 Constructing Tables of Thermodynamic Properties. Charts for Enthalpy and Entropy. 11.8 p-v-T Relations for Gas Mixtures. 11.9 Analyzing Multicomponent Systems. Chapter Summary and Study Guide. 12 Ideal Gas Mixture and Psychrometric Applications. Ideal Gas Mixtures: General Considerations. 12.1 Describing Mixture Composition. 12.2 Relating p, V, and T for Ideal Gas Mixtures. 12.3 Evaluating U, H, S, and Specific Heats. 12.4 Analyzing Systems Involving Mixtures. Psychrometric Applications. 12.5 Introducing Psychrometric Principles. 12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures. 12.7 Psychrometric Charts. 12.8 Analyzing Air-Conditioning Processes. 12.9 Cooling Towers. Chapter Summary and Study Guide. 13 Reacting Mixtures and Combustion. Combustion Fundamentals. 13.1 Introducing Combustion. 13.2 Conservation of Energy-Reacting Systems. 13.3 Determining the Adiabatic Flame Temperature. 13.4 Fuel Cells. 13.5 Absolute Entropy and the Third Law of Thermodynamics. Chemical Exergy. 13.6 Introducing Chemical Exergy. 13.7 Standard Chemical Exergy. 13.8 Exergy Summary. 13.9 Exergetic (Second Law) Efficiencies of Reacting Systems. Chapter Summary and Study Guide. 14 Chemical and Phase Equilibrium. Equilibrium Fundamentals. 14.1 Introducing Equilibrium Criteria. Chemical Equilibrium. 14.2 Equation of Reaction Equilibrium. 14.3 Calculating Equilibrium Compositions. 14.4 Further Examples of the Use of the Equilibrium Constant. Phase Equilibrium. 14.5 Equilibrium Between Two Phases of a Pure Substance. 14.6 Equilibrium of Multicomponent, Multiphase Systems. Chapter Summary and Study Guide. Appendix Tables, Figures, and Charts. Index to Tables in SI Units. Index to Tables in English Units. Index to Figures and Charts. Index. Answers to Selected Problems: Visit the student.

2,775 citations

Book
01 Jan 1985
TL;DR: The Exergy Method as mentioned in this paper is a method of thermodynamic analysis in which the basis of evaluation of the thermodynamic losses follows from the Second Law rather than the First Law of Thermodynamics and has gained in the last few years many new followers, both among practising engineers and academics.
Abstract: The subject of this book, the Exergy Method also known as the Availability Analysis, is a method of thermodynamic analysis in which the basis of evaluation of thermodynamic losses follows from the Second Law rather than the First Law of Thermodynamics. As a result of the recent developments in this technique combined with the increasing need to conserve fuel, the Exergy Method has gained in the last few years many new followers, both among practising engineers and academics. Its advantages, in relation to the traditional techniques which rely mainly on the First Law are now generally recognised. Although the Exergy Method has featured as the subject of many published papers in scientific and engineering journals and at conferences, very few comprehensive English language books on this subject have been published so far. This book is particularly intended for engineers and students specialising in thermal and chemical plant design and operation as well as for applied scientists concerned with various aspects of conservation of energy. It introduces the subject in a manner that can be understood by anyone who is familiar with the fundamentals of Applied hermodynamics.Numerous examples are used in the book to aid the reader in assimilating the basic concepts and in mastering the techniques. The book contains a number of tables and charts which will be found of great assistance in calculations concerning topics such as thermoeconomics, refrigeration, cryogenic processes, combustion, power generation and various aspects of chemical and process engineering.

2,608 citations

Book
01 May 1988
TL;DR: In this paper, the exergetic efficiency of thermal, chemical, and metallurgical processes is analyzed and the application of the exergy concept to the problem of the economical optimization of complex plants and the implications to the environment of pollution due to external exergy losses.
Abstract: In addition to the exergy analysis of thermal processes, e.g. heat engines and commercial power stations, for which the methods described have been long established, the book considers the chemical and metallurgical process industries. Charts and tables are provided for the determination of the exergy of many typical substances. Examples are drawn from the fields of thermal, chemical and metallurgical engineering and the exergetic efficiency of typical processes is calculated. The book also discusses the application of the exergy concept to the problem of the economical optimization of complex plants and the implications to the environment of pollution due to external exergy losses. An Instructor's Manual is available which contains outline solutions to the problems listed at the end of each chapter.

1,982 citations

Journal ArticleDOI
TL;DR: In this article, the efficiency of a Carnot engine for the case where the power output is limited by the rates of heat transfer to and from the working substance was analyzed, and it was shown that the efficiency at maximum power output was given by the expression η = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat source and heat sink.
Abstract: The efficiency of a Carnot engine is treated for the case where the power output is limited by the rates of heat transfer to and from the working substance. It is shown that the efficiency, η, at maximum power output is given by the expression η = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat source and heat sink. It is also shown that the efficiency of existing engines is well described by the above result.

1,965 citations


Network Information
Related Topics (5)
Solar energy
73.2K papers, 1M citations
86% related
Heat transfer
181.7K papers, 2.9M citations
85% related
Renewable energy
87.6K papers, 1.6M citations
84% related
Photovoltaic system
103.9K papers, 1.6M citations
81% related
Combustion
172.3K papers, 1.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023622
20221,097
2021918
2020726
2019613