scispace - formally typeset


Exhaust gas recirculation

About: Exhaust gas recirculation is a(n) research topic. Over the lifetime, 26758 publication(s) have been published within this topic receiving 328683 citation(s). The topic is also known as: EGR.
More filters

Journal ArticleDOI
Mingfa Yao1, Zhaolei Zheng1, Haifeng Liu1Institutions (1)
Abstract: HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.

949 citations

Proceedings ArticleDOI
01 Feb 1979
Abstract: A new lean combustion process for internal combustion engines has been developed. This newly devised combustion system, designated as "Active Thermo-Atmosphere Combustion" (ATAC), differs from conventional gasoline and diesel engine combustion processes. ATAC can be applied most easily to two-stroke cycle gasoline engines. Stable combustion can be achieved with lean mixtures at part-throttle operation. With ATAC the fuel consumption and exhaust emissions of two-stroke cycle spark-ignition engines are remarkably improved, and noise and vibration are reduced.

929 citations

Journal ArticleDOI
01 Jun 1963

880 citations

01 Jan 1997
Abstract: This book was written to be used as an applied thermoscience textbook in a onesemester, college-level, undergraduate engineering course on internal combustion engines. It provides the material needed for a basic understanding of the operation of internal combustion engines. Students are assumed to have knowledge of fundamental thermodynamics, heat transfer, and fluid mechanics as a prerequisite to get maximum benefit from the text. This book can also be used for self-study and/or as a reference book in the field of engine

858 citations

Journal ArticleDOI
John E. Dec1Institutions (1)
01 Jan 2009
Abstract: Advanced compression-ignition (CI) engines can deliver both high efficiencies and very low NOX and particulate (PM) emissions. Efficiencies are comparable to conventional diesel engines, but unlike conventional diesel engines, the charge is highly dilute and premixed (or partially premixed) to achieve low emissions. Dilution is accomplished by operating either lean or with large amounts of EGR. The development of these advanced CI engines has evolved mainly along two lines. First, for fuels other than diesel, a combustion process commonly known as homogeneous charge compression-ignition (HCCI) is generally used, in which the charge is premixed before being compression ignited. Although termed “homogeneous,” there are always some thermal or mixture inhomogeneities in real HCCI engines, and it is sometimes desirable to introduce additional stratification. Second, for diesel fuel (which autoignites easily but has low volatility) an alternative low-temperature combustion (LTC) approach is used, in which the autoignition is closely coupled to the fuel-injection event to provide control over ignition timing. To obtain dilute LTC, this approach relies on high levels of EGR, and injection timing is typically shifted 10–15° CA earlier or later than for conventional diesel combustion so temperatures are lower, which delays ignition and provides more time for premixing. Although these advanced CI combustion modes have important advantages, there are difficulties to implementing them in practical engines. In this article, the principles of HCCI and diesel LTC engines are reviewed along with the results of research on the in-cylinder processes. This research has resulted in substantial progress toward overcoming the main challenges facing these engines, including: improving low-load combustion efficiency, increasing the high-load limit, understanding fuel effects, and maintaining low NOX and PM emissions over the operating range.

825 citations

Network Information
Related Topics (5)
Internal combustion engine

130.5K papers, 1M citations

95% related
Diesel fuel

55.4K papers, 953.3K citations

90% related

172.3K papers, 1.9M citations

89% related
Heat exchanger

184.2K papers, 1M citations

82% related
Heat transfer

181.7K papers, 2.9M citations

79% related
No. of papers in the topic in previous years