scispace - formally typeset
Search or ask a question
Topic

Exhaust gas recirculation

About: Exhaust gas recirculation is a research topic. Over the lifetime, 26758 publications have been published within this topic receiving 328683 citations. The topic is also known as: EGR.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel.
Abstract: Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as ‘dual-fuel engines’. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that ‘dual-fuel concept’ is a promising technique for controlling both NOx and soot emissions even on existing diesel engine. But, HC, CO emissions and ‘bsfc’ are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition characteristics of the gaseous fuels need more research for a long-term use in a dual-fuel engine. It is found that, the selection of engine operating and design parameters play a vital role in minimizing the performance divergences between an existing diesel engine and a ‘gas diesel engine’.

513 citations

Journal ArticleDOI
TL;DR: In this paper, three fatty acid methyl esters ( neat methyl laurate, neat methyl palmitate, and technical grade methyl oleate) were selected for exhaust emissions testing in a heavy-duty 2003 six-cylinder 14 L diesel engine with exhaust gas recirculation.
Abstract: Biodiesel is a renewable, alternative diesel fuel of domestic origin derived from a variety of fats and oils by a transesterification reaction; thus, it consists of the alkyl esters, usually methyl esters, of the fatty acids of the parent oil or fat. An advantage of biodiesel is its potential to significantly reduce most regulated exhaust emissions, including particulate matter (PM), with the exception of nitrogen oxides (NOx). In this work, three fatty acid methyl esters, neat methyl laurate, neat methyl palmitate, and technical grade methyl oleate, were selected for exhaust emissions testing in a heavy-duty 2003 six-cylinder 14 L diesel engine with exhaust gas recirculation. These fuels were compared with neat dodecane and hexadecane as well as commercial samples of biodiesel and low-sulfur petrodiesel as the base fuel, thus establishing for the first time a baseline of the exhaust emissions of neat hydrocarbon (alkane) fuels versus neat methyl esters. All fuels were tested over the heavy-duty diesel tr...

468 citations

Journal ArticleDOI
TL;DR: The use of the diesel engine, with its superior fuel consumption, is to continue to benefit society while greatly reducing its negative environmental and health impacts.
Abstract: The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world's goods, power much of the world's equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population and vehicle miles traveled (VMT) causing ever-increasing global emissions. Diesel emissions contribute to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; soiling; reductions in visibility; and global climate change. Where instituted, control programs have been effective in reducing diesel fleet emissions. Fuel changes, such as reduced sulfur and aromatics content, have resulted in immediate improvements across the entire diesel on- and off-road fleet, and promise more improvements with future control. In the United States, for example, 49-state (non-California) off-road diesel fuel sulfur content is 10 times higher than that of national on-road diesel fuel. Significantly reducing this sulfur content would reduce secondary particulate matter (PM) formation and allow the use of control technologies that have proven effective in the on-road arena. The use of essentially zero-sulfur fuels, such as natural gas, in heavy-duty applications is also expected to continue. Technology changes, such as engine modifications, exhaust gas recirculation, and catalytic aftertreatment, take longer to fully implement, due to slow fleet turnover. However, they eventually result in significant emission reductions and will be continued on an ever-widening basis in the United States and worldwide. New technologies, such as hybrids and fuel cells, show significant promise in reducing emissions from sources currently dominated by diesel use. Lastly, the turnover of trucks and especially off-road equipment is slow; pollution control agencies need to address existing emissions with in-use programs, such as exhaust trap retrofits and smoke inspections. Such a program is underway in California. These and other steps that can be continued and improved will allow the use of the diesel engine, with its superior fuel consumption, to continue to benefit society while greatly reducing its negative environmental and health impacts. The next ten years can and must become the "Decade of Clean Diesel."

467 citations

Journal ArticleDOI
TL;DR: The most prominent characteristic of new combustion modes, such as HCCI, Stratified-charge Compression-Ignition (SCCI), and Low-Temperature Combustion (LTC), is the requirement of creating a homogenous mixture or controllable stratified mixture prior to ignition as discussed by the authors.

466 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of previous and current results of exhaust gas recirculation (EGR) effects on the emissions and performance of Diesel engines, spark ignition engines and duel fuel engines is introduced.

462 citations


Network Information
Related Topics (5)
Internal combustion engine
130.5K papers, 1M citations
95% related
Diesel fuel
55.4K papers, 953.3K citations
90% related
Combustion
172.3K papers, 1.9M citations
89% related
Heat exchanger
184.2K papers, 1M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023168
2022379
2021244
2020433
2019473
2018501