scispace - formally typeset
Search or ask a question
Topic

Exome

About: Exome is a research topic. Over the lifetime, 5218 publications have been published within this topic receiving 269398 citations.


Papers
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity.
Abstract: We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

9,355 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel2, Eric Vallabh Minikel1, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria3, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria2, James S. Ware, Andrew J. Hill4, Andrew J. Hill1, Andrew J. Hill2, Beryl B. Cummings2, Beryl B. Cummings1, Taru Tukiainen1, Taru Tukiainen2, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan2, Laramie E. Duncan1, Karol Estrada2, Karol Estrada1, Fengmei Zhao2, Fengmei Zhao1, James Zou2, Emma Pierce-Hoffman1, Emma Pierce-Hoffman2, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick1, Jason Flannick2, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein1, Jackie Goldstein2, Namrata Gupta2, Daniel P. Howrigan1, Daniel P. Howrigan2, Adam Kiezun2, Mitja I. Kurki1, Mitja I. Kurki2, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas2, Brett Thomas1, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler2, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez1, Jose C. Florez2, Stacey Gabriel2, Gad Getz1, Gad Getz2, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll2, Steven A. McCarroll1, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale1, Benjamin M. Neale2, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan14, Patrick F. Sullivan21, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins17, Hugh Watkins16, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur2, Daniel G. MacArthur1 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
Donna M. Muzny1, Matthew N. Bainbridge1, Kyle Chang1, Huyen Dinh1  +317 moreInstitutions (24)
19 Jul 2012-Nature
TL;DR: Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Abstract: To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase e (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.

6,883 citations

Journal ArticleDOI
Michael S. Lawrence1, Petar Stojanov2, Petar Stojanov1, Paz Polak1, Paz Polak3, Paz Polak2, Gregory V. Kryukov2, Gregory V. Kryukov3, Gregory V. Kryukov1, Kristian Cibulskis1, Andrey Sivachenko1, Scott L. Carter1, Chip Stewart1, Craig H. Mermel1, Craig H. Mermel2, Steven A. Roberts4, Adam Kiezun1, Peter S. Hammerman1, Peter S. Hammerman2, Aaron McKenna5, Aaron McKenna1, Yotam Drier, Lihua Zou1, Alex H. Ramos1, Trevor J. Pugh2, Trevor J. Pugh1, Nicolas Stransky1, Elena Helman6, Elena Helman1, Jaegil Kim1, Carrie Sougnez1, Lauren Ambrogio1, Elizabeth Nickerson1, Erica Shefler1, Maria L. Cortes1, Daniel Auclair1, Gordon Saksena1, Douglas Voet1, Michael S. Noble1, Daniel DiCara1, Pei Lin1, Lee Lichtenstein1, David I. Heiman1, Timothy Fennell1, Marcin Imielinski2, Marcin Imielinski1, Bryan Hernandez1, Eran Hodis2, Eran Hodis1, Sylvan C. Baca1, Sylvan C. Baca2, Austin M. Dulak2, Austin M. Dulak1, Jens G. Lohr1, Jens G. Lohr2, Dan A. Landau2, Dan A. Landau1, Dan A. Landau7, Catherine J. Wu2, Jorge Melendez-Zajgla, Alfredo Hidalgo-Miranda, Amnon Koren2, Amnon Koren1, Steven A. McCarroll1, Steven A. McCarroll2, Jaume Mora8, Ryan S. Lee9, Ryan S. Lee2, Brian D. Crompton9, Brian D. Crompton2, Robert C. Onofrio1, Melissa Parkin1, Wendy Winckler1, Kristin G. Ardlie1, Stacey Gabriel1, Charles W. M. Roberts2, Charles W. M. Roberts9, Jaclyn A. Biegel10, Kimberly Stegmaier1, Kimberly Stegmaier9, Kimberly Stegmaier2, Adam J. Bass1, Adam J. Bass2, Levi A. Garraway1, Levi A. Garraway2, Matthew Meyerson2, Matthew Meyerson1, Todd R. Golub, Dmitry A. Gordenin4, Shamil R. Sunyaev3, Shamil R. Sunyaev2, Shamil R. Sunyaev1, Eric S. Lander1, Eric S. Lander6, Eric S. Lander2, Gad Getz1, Gad Getz2 
11 Jul 2013-Nature
TL;DR: A fundamental problem with cancer genome studies is described: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds and the list includes many implausible genes, suggesting extensive false-positive findings that overshadow true driver events.
Abstract: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.

4,411 citations

Journal ArticleDOI
TL;DR: An analysis tool for the detection of somatic mutations and copy number alterations in exome data from tumor-normal pairs is presented and new light is shed on the landscape of genetic alterations in ovarian cancer.
Abstract: Exome sequencing of tumor samples and matched normal controls has the potential to rapidly identify protein-altering mutations across hundreds of patients, potentially enabling the discovery of recurrent events driving tumor development and growth (International Cancer Genome Consortium 2010; Stratton 2011). Yet the analysis of such data presents significant challenges. Sequencing coverage is nonuniform across targeted regions and from one sample to the next (Ng et al. 2009; Bainbridge et al. 2010; Teer et al. 2010). Many regions achieve high read depth (more than 100×), which can confound variant callers and depth-based filters if not properly addressed (Ku et al. 2011). Repetitive and paralogous sequences can give rise to numerous false positives. The detection of somatic mutations in tumor genomes is even more challenging. The genomes of primary tumors are genetically heterogeneous (Ding et al. 2010), with frequent rearrangements (Campbell et al. 2008) and copy number alterations (CNAs) (Beroukhim et al. 2010). Further, somatic mutations are relatively rare compared with germline variation, often representing <0.1% of variants in a tumor genome (Ley et al. 2008; Mardis et al. 2009). Simply subtracting variants in the matched normal from variants in the tumor (Wei et al. 2011) is poorly suited for the analysis of exome sequence data, because it fails to account for regions that were undersampled in the normal. Accurate mutation detection requires a direct, simultaneous comparison of tumor–normal pairs at every position in the exome, but few algorithms to do so have been described. Numerous algorithms have been developed to assess genome-wide copy number using whole-genome sequencing (WGS) data. Most of these approaches (Campbell et al. 2008; Alkan et al. 2009; Chiang et al. 2009; Yoon et al. 2009; Abyzov et al. 2011) would be confounded by exome data sets, because of the biases introduced by hybridization and the sparse and uneven coverages throughout the genome. However, when both DNA samples in a tumor–normal pair were captured and sequenced under identical hybridization conditions, we reasoned that it might be possible to detect somatic CNAs (SCNAs) as deviations from the log-ratio of sequence coverage depth within a tumor–normal pair, and then quantify the deviations statistically. Such an approach would provide a gene-centric view of copy number in a tumor sample, though it would be limited to the ∼1% of the genome captured by current exome platforms. Previously, we published VarScan (Koboldt et al. 2009), an algorithm for variant detection in next-generation sequencing data. We have since released a new tool, VarScan 2 (http://varscan.sourceforge.net), with several improvements, including the ability to identify somatic mutation, loss of heterozygosity (LOH), and CNA events in tumor–normal pairs. VarScan 2 analyzes sequence data from a tumor sample and its corresponding normal sample simultaneously, applying heuristic methods and a statistical test to detect variants—single nucleotide variants (SNVs) and insertions/deletions (indels)—and classify them by somatic status. By direct comparison of normalized sequence depth, our method also detects SCNAs in the tumor genome. Here, we utilize VarScan 2 for the analysis of exome sequence data from 151 patients with high-grade serous ovarian adenocarcinoma (HGS-OVCa) that were initially characterized within the Cancer Genome Atlas (TCGA) project (Cancer Genome Atlas Research Network 2011). We present a robust pipeline for the detection of both germline (inherited) and somatic (acquired) mutations by exome sequencing and describe filtering approaches for detecting variants with high sensitivity and specificity. To evaluate the performance of our SCNA detection algorithm, we compare our results to copy number data from high-density SNP array and WGS approaches. Our results demonstrate the accuracy of VarScan 2 for somatic mutation and CNA detection and enable a new survey of the genetic landscape in ovarian carcinoma.

4,096 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
91% related
DNA methylation
49.8K papers, 2.5M citations
87% related
Epigenetics
38.1K papers, 1.7M citations
87% related
Gene
211.7K papers, 10.3M citations
85% related
Locus (genetics)
42.7K papers, 2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023625
2022814
2021435
2020373
2019431
2018482