scispace - formally typeset
Search or ask a question
Topic

Exome sequencing

About: Exome sequencing is a research topic. Over the lifetime, 13173 publications have been published within this topic receiving 430995 citations. The topic is also known as: whole exome sequencing & WES.


Papers
More filters
Journal ArticleDOI
TL;DR: Strelka is described, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples that uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal.
Abstract: Motivation Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. Results We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. Availability The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. Contact csaunders@illumina.com

1,401 citations

Journal ArticleDOI
TL;DR: SPOP mutations may define a new molecular subtype of prostate cancer, with mutations involving the SPOP substrate-binding cleft in 6–15% of tumors across multiple independent cohorts.
Abstract: Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year. Overtreatment of indolent disease also results in significant morbidity. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21) and PTEN (10q23), gains of AR (the androgen receptor gene) and fusion of ETS family transcription factor genes with androgen-responsive promoters. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis but have not been systematically analyzed in large cohorts. Here, we sequenced the exomes of 112 prostate tumor and normal tissue pairs. New recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate-binding cleft in 6-15% of tumors across multiple independent cohorts. Prostate cancers with mutant SPOP lacked ETS family gene rearrangements and showed a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer.

1,370 citations

Journal ArticleDOI
26 Apr 2012-Neuron
TL;DR: Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveals de novo small indels and point substitutions, which suggest FMRP-associated genes are especially dosage-sensitive targets of cognitive disorders.

1,354 citations

Journal ArticleDOI
TL;DR: A method for whole-exome sequencing coupling Roche/NimbleGen whole exome arrays to the Illumina DNA sequencing platform is reported, demonstrating the ability to capture approximately 95% of the targeted coding sequences with high sensitivity and specificity for detection of homozygous and heterozygous variants.
Abstract: Protein coding genes constitute only approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., “whole exome”) have the potential to contribute to the understanding of rare and common human diseases. Here we report a method for whole-exome sequencing coupling Roche/NimbleGen whole exome arrays to the Illumina DNA sequencing platform. We demonstrate the ability to capture approximately 95% of the targeted coding sequences with high sensitivity and specificity for detection of homozygous and heterozygous variants. We illustrate the utility of this approach by making an unanticipated genetic diagnosis of congenital chloride diarrhea in a patient referred with a suspected diagnosis of Bartter syndrome, a renal salt-wasting disease. The molecular diagnosis was based on the finding of a homozygous missense D652N mutation at a position in SLC26A3 (the known congenital chloride diarrhea locus) that is virtually completely conserved in orthologues and paralogues from invertebrates to humans, and clinical follow-up confirmed the diagnosis. To our knowledge, whole-exome (or genome) sequencing has not previously been used to make a genetic diagnosis. Five additional patients suspected to have Bartter syndrome but who did not have mutations in known genes for this disease had homozygous deleterious mutations in SLC26A3. These results demonstrate the clinical utility of whole-exome sequencing and have implications for disease gene discovery and clinical diagnosis.

1,330 citations

Journal ArticleDOI
13 Feb 2014-Nature
TL;DR: In this article, the exome sequences of 2,536 schizophrenia cases and 2,543 controls were analyzed and the authors demonstrated a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes.
Abstract: Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.

1,323 citations


Network Information
Related Topics (5)
Mutation
45.2K papers, 2.6M citations
92% related
Exon
38.3K papers, 1.7M citations
92% related
DNA methylation
49.8K papers, 2.5M citations
86% related
Epigenetics
38.1K papers, 1.7M citations
85% related
Gene expression profiling
26.9K papers, 1.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,857
20223,028
20211,775
20201,594
20191,522