scispace - formally typeset
Search or ask a question

Showing papers on "Exon published in 2021"


Journal ArticleDOI
TL;DR: PURPOSENon-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion (Exon20ins) mutations exhibits inherent resistance to approved tyrosine kinase inhibitors as mentioned in this paper.
Abstract: PURPOSENon–small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion (Exon20ins) mutations exhibits inherent resistance to approved tyrosine kinase inhibitors. A...

245 citations


Journal ArticleDOI
TL;DR: In this article, a full-length, small-sample RNA-seq protocol profiled transcriptomes for all 14 renal tubule segments microdissected from mouse kidneys and identified >34,000 transcripts, including 3709 that were expressed in a segment-specific manner.
Abstract: Background The repertoire of protein expression along the renal tubule depends both on regulation of transcription and regulation of alternative splicing that can generate multiple proteins from a single gene. Methods A full-length, small-sample RNA-seq protocol profiled transcriptomes for all 14 renal tubule segments microdissected from mouse kidneys. Results This study identified >34,000 transcripts, including 3709 that were expressed in a segment-specific manner. All data are provided as an online resource (https://esbl.nhlbi.nih.gov/MRECA/Nephron/). Many of the genes expressed in unique patterns along the renal tubule were solute carriers, transcription factors, or G protein-coupled receptors that account for segment-specific function. Mapping the distribution of transcripts associated with Wnk-SPAK-PKA signaling, renin-angiotensin-aldosterone signaling, and cystic diseases of the kidney illustrated the applications of the online resource. The method allowed full-length mapping of RNA-seq reads, which facilitated comprehensive, unbiased characterization of alternative exon usage along the renal tubule, including known isoforms of Cldn10, Kcnj1 (ROMK), Slc12a1 (NKCC2), Wnk1, Stk39 (SPAK), and Slc14a2 (UT-A urea transporter). It also identified many novel isoforms with segment-specific distribution. These included variants associated with altered protein structure (Slc9a8, Khk, Tsc22d1, and Scoc), and variants that may affect untranslated, regulatory regions of transcripts (Pth1r, Pkar1a, and Dab2). Conclusions Full-length, unbiased sequencing of transcripts identified gene-expression patterns along the mouse renal tubule. The data, provided as an online resource, include both quantitative and qualitative differences in transcripts. Identification of alternative splicing along the renal tubule may prove critical to understanding renal physiology and pathophysiology.

98 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis, and found that splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon.

77 citations


Journal ArticleDOI
TL;DR: In this paper, the authors showed that the long noncoding RNA CRNDE was related to the chemosensitivity of gastric cancer in clinical samples and a PDX model, and revealed the key role of CR NDE in autophagy regulation, highlighting the significance of CRN DE as a potential prognostic marker and therapeutic target against chemoresistance in GC.
Abstract: De novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.

74 citations


Journal ArticleDOI
01 Jul 2021-Blood
TL;DR: In this paper, the prevalence of mutations at methionine 41 (Met41) in UBA1, encoding the major E1 enzyme responsible for initiating ubiquitylation, were identified as the cause of a novel autoinflammatory disease, named VEXAS.

72 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the prevalence and pan-cancer distribution of EGFR and HER2 exon 20 insertions, their biology and detection, and associated responses to current molecularly targeted therapies and immunotherapies.
Abstract: Protein tyrosine kinases of the human epidermal growth factor receptor family, including EGFR and HER2, have emerged as important therapeutic targets in non-small-cell lung, breast and gastroesophageal cancers, and are of relevance for the treatment of various other malignancies (particularly colorectal cancer). Classic activating EGFR exon 19 deletions and exon 21 mutations, and HER2 amplification and/or overexpression, are predictive of response to matched molecularly targeted therapies, translating into favourable objective response rates and survival outcomes. By comparison, cancers with insertion mutations in exon 20 of either EGFR or HER2 are considerably less sensitive to the currently available tyrosine kinase inhibitors and antibodies targeting these receptors. These exon 20 insertions are structurally distinct from other EGFR and HER2 mutations, providing an explanation for this lack of sensitivity. In this Review, we first discuss the prevalence and pan-cancer distribution of EGFR and HER2 exon 20 insertions, their biology and detection, and associated responses to current molecularly targeted therapies and immunotherapies. We then focus on novel approaches that are being developed to more effectively target tumours driven by these non-classic EGFR and HER2 alterations. EGFR exon 19 deletions and exon 21 mutations, and HER2 amplification and/or overexpression, are predictive of response to matched molecularly targeted therapies that have greatly improved patient outcomes. However, insertion mutations in exon 20 of either EGFR or HER2 generally do not confer sensitivity to these therapies. In this Review, the authors discuss the prevalence of EGFR and HER2 exon 20 insertions across cancers, their biology and detection, and associated responses to current molecularly targeted therapies and immunotherapies. In addition, they focus on new therapeutic strategies that are being developed to target tumours driven by these non-classic EGFR and HER2 alterations.

68 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed an algorithm that detects aberrant splicing and intron retention events from RNA-seq data and apply it to diagnosis in mitochondrial disease, which is easy to use and freely available.
Abstract: Aberrant splicing is a major cause of rare diseases. However, its prediction from genome sequence alone remains in most cases inconclusive. Recently, RNA sequencing has proven to be an effective complementary avenue to detect aberrant splicing. Here, we develop FRASER, an algorithm to detect aberrant splicing from RNA sequencing data. Unlike existing methods, FRASER captures not only alternative splicing but also intron retention events. This typically doubles the number of detected aberrant events and identified a pathogenic intron retention in MCOLN1 causing mucolipidosis. FRASER automatically controls for latent confounders, which are widespread and affect sensitivity substantially. Moreover, FRASER is based on a count distribution and multiple testing correction, thus reducing the number of calls by two orders of magnitude over commonly applied z score cutoffs, with a minor loss of sensitivity. Applying FRASER to rare disease diagnostics is demonstrated by reprioritizing a pathogenic aberrant exon truncation in TAZ from a published dataset. FRASER is easy to use and freely available. Aberrant splicing is a major contributor to rare disease, but detection accuracy using current methods is limited. Here, the authors develop an algorithm that detects aberrant splicing and intron retention events from RNA-seq data and apply it to diagnosis in mitochondrial disease.

65 citations


Journal ArticleDOI
TL;DR: In this paper, QR-421a-induced exon skipping was shown to induce exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation.

60 citations


Journal ArticleDOI
TL;DR: The insertion mutations in Erb-b2 receptor tyrosine kinase 2 gene (ERBB2 or HER2) exon 20 occur in 2%-5% of non-small-cell lung cancers (NSCLCs) and function as an oncogenic driver.
Abstract: PURPOSEInsertion mutations in Erb-b2 receptor tyrosine kinase 2 gene (ERBB2 or HER2) exon 20 occur in 2%-5% of non–small-cell lung cancers (NSCLCs) and function as an oncogenic driver. Poziotinib, ...

49 citations


Journal ArticleDOI
Abstract: Phase-separated membraneless bodies play important roles in nucleic acid biology. While current models for the roles of phase separation largely focus on the compartmentalization of constituent proteins, we reason that other properties of phase separation may play functional roles. Specifically, we propose that interfaces of phase-separated membraneless bodies could have functional roles in spatially organizing biochemical reactions. Here we propose such a model for the nuclear speckle, a membraneless body implicated in RNA splicing. In our model, sequence-dependent RNA positioning along the nuclear speckle interface coordinates RNA splicing. Our model asserts that exons are preferentially sequestered into nuclear speckles through binding by SR proteins, while introns are excluded through binding by nucleoplasmic hnRNP proteins. As a result, splice sites at exon-intron boundaries are preferentially positioned at nuclear speckle interfaces. This positioning exposes splice sites to interface-localized spliceosomes, enabling the subsequent splicing reaction. Our model provides a simple mechanism that seamlessly explains much of the complex logic of splicing. This logic includes experimental results such as the antagonistic duality between splicing factors, the position dependence of splicing sequence motifs, and the collective contribution of many motifs to splicing decisions. Similar functional roles for phase-separated interfaces may exist for other membraneless bodies.

41 citations


Journal ArticleDOI
TL;DR: In this paper, the properties, characterization, profiling, and diverse molecular mechanisms of circRNAs and their use as potential therapeutic targets in different human malignancies are discussed, including cancer and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Abstract: Circular RNAs (circRNAs) are an evolutionarily conserved novel class of non-coding endogenous RNAs (ncRNAs) found in the eukaryotic transcriptome, originally believed to be aberrant RNA splicing by-products with decreased functionality. However, recent advances in high-throughput genomic technology have allowed circRNAs to be characterized in detail and revealed their role in controlling various biological and molecular processes, the most essential being gene regulation. Because of the structural stability, high expression, availability of microRNA (miRNA) binding sites and tissue-specific expression, circRNAs have become hot topic of research in RNA biology. Compared to the linear RNA, circRNAs are produced differentially by backsplicing exons or lariat introns from a pre-messenger RNA (mRNA) forming a covalently closed loop structure missing 3' poly-(A) tail or 5' cap, rendering them immune to exonuclease-mediated degradation. Emerging research has identified multifaceted roles of circRNAs as miRNA and RNA binding protein (RBP) sponges and transcription, translation, and splicing event regulators. CircRNAs have been involved in many human illnesses, including cancer and neurodegenerative disorders such as Alzheimer's and Parkinson's disease, due to their aberrant expression in different pathological conditions. The functional versatility exhibited by circRNAs enables them to serve as potential diagnostic or predictive biomarkers for various diseases. This review discusses the properties, characterization, profiling, and the diverse molecular mechanisms of circRNAs and their use as potential therapeutic targets in different human malignancies.

Journal ArticleDOI
TL;DR: An RNA editing-associated mechanism of hepatocarcinogenesis is uncovered by which downregulation of ADAR2 caused the loss of tumor suppressive COPA and concurrent accumulation of tumor-promoting COPAWT in tumors; and a rapid degradation of COPAI164V protein and hyper-activation of PI3K/Akt/mTOR pathway further promote tumorigenesis.

Journal ArticleDOI
TL;DR: Capmatinib and tepotinib as mentioned in this paper were the first two therapies to be FDA approved specifically for patients with metastatic non-small cell lung cancer (mNSCLC) with MET exon 14 skipping.
Abstract: The FDA approved capmatinib and tepotinib on May 6, 2020, and February 3, 2021, respectively. Capmatinib is indicated for patients with metastatic non-small cell lung cancer (mNSCLC) whose tumors have a mutation leading to mesenchymal-epithelial transition (MET) exon 14 skipping as detected by an FDA-approved test. Tepotinib is indicated for mNSCLC harboring MET exon 14 skipping alterations. The approvals were based on trials GEOMETRY mono-1 (capmatinib) and VISION (tepotinib). In GEOMETRY mono-1, overall response rate (ORR) per Blinded Independent Review Committee (BIRC) was 68% [95% confidence interval (CI), 48-84] with median duration of response (DoR) 12.6 months (95% CI, 5.5-25.3) in 28 treatment-naive patients and 41% (95% CI: 29, 53) with median DoR 9.7 months (95% CI, 5.5-13) in 69 previously treated patients with NSCLC with mutations leading to MET exon 14 skipping. In VISION, ORR per BIRC was 43% (95% CI: 32, 56) with median DoR 10.8 months (95% CI, 6.9-not estimable) in 69 treatment-naive patients and 43% (95% CI, 33-55) with median DoR 11.1 months (95% CI, 9.5-18.5) in 83 previously-treated patients with NSCLC harboring MET exon 14 alterations. These are the first two therapies to be FDA approved specifically for patients with metastatic NSCLC with MET exon 14 skipping.

Journal ArticleDOI
TL;DR: In this article, the authors showed that removing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff granules and changes in gene expression.
Abstract: The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aβ sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAβ expression, rescues cognition and reduces the formation of PAS granules.

Journal ArticleDOI
TL;DR: In this paper, the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN was investigated and it was shown that motif I is essential for the Nsp14 function.
Abstract: SARS-CoV-2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS-CoV-2. Nsp14 is a multifunctional protein with two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14-nsp10 complex from SARS-CoV-2. We confirm the 3'-5' exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS-CoV-2 nsp14-nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14-mediated ExoN activity of SARS-CoV-2. We studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS-CoV-2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.

Journal ArticleDOI
TL;DR: The authors used long-read isoform sequencing to generate full-length transcript sequences in the human and mouse cortex and identified novel transcripts not present in existing genome annotations, including transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes.

Journal ArticleDOI
TL;DR: In this article, the "nascent RNA structureome" relates to splicing, A-I editing and transcription speed, and is associated with efficient co-transcriptional splicing within introns and steep structural transitions at splice sites.

Journal ArticleDOI
TL;DR: In this article, the authors showed that circLMO7-miR-30a-3p-WNT2 axis could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models.
Abstract: Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/β-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism). Through RNA sequencing, we found that hsa_circ_0008259 (circLMO7) was highly expressed in GC tissues. After verifying the circular characteristics of circLMO7, we determined the downstream miRNA (miR-30a-3p) of circLMO7 by RNA pull-down and luciferase reporter assays. We verified the effect of circLMO7 and miR-30a-3p on GC cells through a series of functional experiments, including colony formation, 5-ethynyl-2′-deoxyuridine and Transwell assays. Through Western blot and immunofluorescence analyses, we found that WNT2 was the downstream target gene of miR-30a-3p and further confirmed that the circLMO7-miR-30a-3p-WNT2 axis could promote the development of GC. In addition, measurement of related metabolites confirmed that this axis could also provide energy for the growth of GC cells through glutamine metabolism. We found that circLMO7 could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models. Finally, we also demonstrated that HNRNPL could bind to the flanking introns of the circLMO7 exons to promote circLMO7 cyclization. CircLMO7 acted as a miR-30a-3p sponge affecting the WNT2/β-Catenin pathway to promote the proliferation, migration and invasion of GC cells. Moreover, animal results also showed that circLMO7 could promote GC growth and metastasis in vivo. CircLMO7 could also affect the glutamine metabolism of GC cells through the WNT2/β-Catenin pathway to promote its malignant biological function. In addition, we proved that HNRNPL could promote the self-cyclization of circLMO7. CircLMO7 promotes the development of GC by releasing the inhibitory effect of miR-30a-3p on its target gene WNT2.

Journal ArticleDOI
TL;DR: It is reported that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform, suggesting that the precise expression of AUTs2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.
Abstract: Mutations in AUTS2 are associated with autism, intellectual disability, and microcephaly. AUTS2 is expressed in the brain and interacts with polycomb proteins, yet it is still unclear how mutations in AUTS2 lead to neurodevelopmental phenotypes. Here we report that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform. Yeast two-hybrid screen identified the splicing factor SF3B1 as an interactor of both isoforms, whereas the polycomb group proteins, PCGF3 and PCGF5, were found to interact exclusively with the long AUTS2 isoform. Reporter assays showed that the first exons of the long AUTS2 isoform function as a transcription repressor, but the part that consist of the short isoform acts as a transcriptional activator, both influenced by the cellular context. The expression levels of PCGF3 influenced the ability of the long AUTS2 isoform to activate or repress transcription. Mouse embryonic stem cells (mESCs) with heterozygote mutations in Auts2 had an increase in cell death during in vitro corticogenesis, which was significantly rescued by overexpressing the human AUTS2 transcripts. mESCs with a truncated AUTS2 protein (missing exons 12–20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2, especially the long transcript, showed increase in expression of pluripotency markers and delayed differentiation. Taken together, our data suggest that the precise expression of AUTS2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.

Journal ArticleDOI
TL;DR: In this article, a combinatorial drug therapy with RNA-dependent RNA polymerase (RdRp) and Exonuclease (ExoN) inhibitors was proposed to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worldwide. Currently, many clinical trials in search of effective COVID-19 drugs are underway. Viral RNA-dependent RNA polymerase (RdRp) remains the target of choice for prophylactic or curative treatment of COVID-19. Nucleoside analogs are the most promising RdRp inhibitors and have shown effectiveness in vitro, as well as in clinical settings. One limitation of such RdRp inhibitors is the removal of incorporated nucleoside analogs by SARS-CoV-2 exonuclease (ExoN). Thus, ExoN proofreading activity accomplishes resistance to many of the RdRp inhibitors. We hypothesize that in the absence of highly efficient antivirals to treat COVID-19, combinatorial drug therapy with RdRp and ExoN inhibitors will be a promising strategy to combat the disease. To repurpose drugs for COVID-19 treatment, 10,397 conformers of 2,240 approved drugs were screened against the ExoN domain of nsp14 using AutoDock VINA. The molecular docking approach and detailed study of interactions helped us to identify dexamethasone metasulfobenzoate, conivaptan, hesperidin, and glycyrrhizic acid as potential inhibitors of ExoN activity. The results were further confirmed using molecular dynamics (MD) simulations and molecular mechanics combined with generalized Born model and solvent accessibility method (MM-GBSA) calculations. Furthermore, the binding free energy of conivaptan and hesperidin, estimated using MM-GBSA, was -85.86 ± 0.68 and 119.07 ± 0.69 kcal/mol, respectively. Based on docking, MD simulations and known antiviral activities, and conivaptan and hesperidin were identified as potential SARS-CoV-2 ExoN inhibitors. We recommend further investigation of this combinational therapy using RdRp inhibitors with a repurposed ExoN inhibitor as a potential COVID-19 treatment.

Journal ArticleDOI
TL;DR: In this article, the authors identified circURI1 back-spliced from exons 3 and 4 of unconventional prefoldin RPB5 interactor 1 (URI1) from circRNA profiling of five-paired human gastric and the corresponding nontumor adjacent specimens (paraGC).
Abstract: Circular RNAs (circRNAs) have emerged as key regulators of human cancers, yet their modes of action in gastric cancer (GC) remain largely unknown. Here, we identified circURI1 back-spliced from exons 3 and 4 of unconventional prefoldin RPB5 interactor 1 (URI1) from circRNA profiling of five-paired human gastric and the corresponding nontumor adjacent specimens (paraGC). CircURI1 exhibits the significantly higher expression in GC compared with paraGC and inhibitory effects on cell migration and invasion in vitro and GC metastasis in vivo. Mechanistically, circURI1 directly interacts with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to modulate alternative splicing of genes, involved in the process of cell migration, thus suppressing GC metastasis. Collectively, our study expands the current knowledge regarding the molecular mechanism of circRNA-mediated cancer metastasis via modulating alternative splicing.

Journal ArticleDOI
21 Jan 2021-eLife
TL;DR: In this article, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO) are enriched around circRNA loci.
Abstract: Circular RNAs (circRNAs) represent an abundant and conserved entity of non-coding RNAs; however, the principles of biogenesis are currently not fully understood. Here, we identify two factors, splicing factor proline/glutamine rich (SFPQ) and non-POU domain-containing octamer-binding protein (NONO), to be enriched around circRNA loci. We observe a subclass of circRNAs, coined DALI circRNAs, with distal inverted Alu elements and long flanking introns to be highly deregulated upon SFPQ knockdown. Moreover, SFPQ depletion leads to increased intron retention with concomitant induction of cryptic splicing, premature transcription termination, and polyadenylation, particularly prevalent for long introns. Aberrant splicing in the upstream and downstream regions of circRNA producing exons are critical for shaping the circRNAome, and specifically, we identify missplicing in the immediate upstream region to be a conserved driver of circRNA biogenesis. Collectively, our data show that SFPQ plays an important role in maintaining intron integrity by ensuring accurate splicing of long introns, and disclose novel features governing Alu-independent circRNA production.

Journal ArticleDOI
TL;DR: Investigating alternative splicing across males and females of multiple bird species identifies hundreds of genes that have sex-specific patterns of splicing and establishes that sex differences in splicing are correlated with phenotypic sex differences.
Abstract: Males and females of the same species share the majority of their genomes, yet they are frequently exposed to conflicting selection pressures. Gene regulation is widely assumed to resolve these conflicting sex-specific selection pressures, and although there has been considerable focus on elucidating the role of gene expression level in sex-specific adaptation, other regulatory mechanisms have been overlooked. Alternative splicing enables different transcripts to be generated from the same gene, meaning that exons which have sex-specific beneficial effects can in theory be retained in the gene product, whereas exons with detrimental effects can be skipped. However, at present, little is known about how sex-specific selection acts on broad patterns of alternative splicing. Here, we investigate alternative splicing across males and females of multiple bird species. We identify hundreds of genes that have sex-specific patterns of splicing and establish that sex differences in splicing are correlated with phenotypic sex differences. Additionally, we find that alternatively spliced genes have evolved rapidly as a result of sex-specific selection and suggest that sex differences in splicing offer another route to sex-specific adaptation when gene expression level changes are limited by functional constraints. Overall, our results shed light on how a diverse transcriptional framework can give rise to the evolution of phenotypic sexual dimorphism.

Posted ContentDOI
04 Apr 2021-bioRxiv
TL;DR: The high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anti-coronaviral drugs or strategies to attenuate the viral virulence.
Abstract: High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3'-to-5' exoribonuclease (ExoN) in non-structural protein 14 (nsp14), which excises nucleotides including antiviral drugs mis-incorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here we determined a 1.6-A resolution crystal structure of SARS-CoV-2 ExoN in complex with its essential co-factor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 3' end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. Molecular dynamics simulations further show remarkable flexibility of multi-domain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA-binding to support its exoribonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anti-coronaviral drugs or strategies to attenuate the viral virulence.

Journal ArticleDOI
TL;DR: In this article, a machine learning approach, applied to extensive epigenomics datasets in human H1 embryonic stem cells and IMR90 foetal fibroblasts, has identified eleven chromatin modifications that differentially mark alternatively spliced exons depending on the level of exon inclusion.
Abstract: Alternative splicing relies on the combinatorial recruitment of splicing regulators to specific RNA binding sites. Chromatin has been shown to impact this recruitment. However, a limited number of histone marks have been studied at a global level. In this work, a machine learning approach, applied to extensive epigenomics datasets in human H1 embryonic stem cells and IMR90 foetal fibroblasts, has identified eleven chromatin modifications that differentially mark alternatively spliced exons depending on the level of exon inclusion. These marks act in a combinatorial and position-dependent way, creating characteristic splicing-associated chromatin signatures (SACS). In support of a functional role for SACS in coordinating splicing regulation, changes in the alternative splicing of SACS-marked exons between ten different cell lines correlate with changes in SACS enrichment levels and recruitment of the splicing regulators predicted by RNA motif search analysis. We propose the dynamic nature of chromatin modifications as a mechanism to rapidly fine-tune alternative splicing when necessary. Chromatin is known to regulate splicing by modulating recruitment of splicing factors. Using machine learning approaches, the authors have underlined a chromatin code for alternative splicing regulation that is conserved amongst cell lines.

Journal ArticleDOI
14 May 2021-Science
TL;DR: In this article, a previously unknown structural splicing enhancer that is enriched near cassette exons with increased inclusion in highly metastatic cells was found to enhance metastatic lung colonization and cancer cell invasion, in part through SNRPA1-mediated regulation of PLEC alternative splicing.
Abstract: Aberrant alternative splicing is a hallmark of cancer, yet the underlying regulatory programs that control this process remain largely unknown. Here, we report a systematic effort to decipher the RNA structural code that shapes pathological splicing during breast cancer metastasis. We discovered a previously unknown structural splicing enhancer that is enriched near cassette exons with increased inclusion in highly metastatic cells. We show that the spliceosomal protein small nuclear ribonucleoprotein polypeptide A' (SNRPA1) interacts with these enhancers to promote cassette exon inclusion. This interaction enhances metastatic lung colonization and cancer cell invasion, in part through SNRPA1-mediated regulation of PLEC alternative splicing, which can be counteracted by splicing modulating morpholinos. Our findings establish a noncanonical regulatory role for SNRPA1 as a prometastatic splicing enhancer in breast cancer.

Journal ArticleDOI
TL;DR: In this article, the role of SRSF proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression and contributes to normal as well as pathological angiogenesis.
Abstract: Background Angiogenesis is the process by which new blood vessels arise from pre-existing ones. Fibroblast growth factor-2 (FGF-2), a leading member of the FGF family of heparin-binding growth factors, contributes to normal as well as pathological angiogenesis. Pre-mRNA alternative splicing plays a key role in the regulation of cellular and tissular homeostasis and is highly controlled by splicing factors, including SRSFs. SRSFs belong to the SR protein family and are regulated by serine/threonine kinases such as SRPK1. Up to now, the role of SR proteins and their regulators in the biology of endothelial cells remains elusive, in particular upstream signals that control their expression. Results By combining 2D endothelial cells cultures, 3D collagen sprouting assay, a model of angiogenesis in cellulose sponges in mice and a model of angiogenesis in zebrafish, we collectively show that FGF-2 promotes proliferation, survival, and sprouting of endothelial cells by activating a SRSF1/SRSF3/SRPK1-dependent axis. In vitro, we further demonstrate that this FGF-2-dependent signaling pathway controls VEGFR1 pre-mRNA splicing and leads to the generation of soluble VEGFR1 splice variants, in particular a sVEGFR1-ex12 which retains an alternative last exon, that contribute to FGF-2-mediated angiogenic functions. Finally, we show that sVEGFR1-ex12 mRNA level correlates with that of FGF-2/FGFR1 in squamous lung carcinoma patients and that sVEGFR1-ex12 is a poor prognosis marker in these patients. Conclusions We demonstrate that FGF-2 promotes angiogenesis by activating a SRSF1/SRSF3/SRPK1 network that regulates VEGFR1 alternative splicing in endothelial cells, a process that could also contribute to lung tumor progression.

Journal ArticleDOI
TL;DR: A review of the current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases is provided in this article.
Abstract: Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer’s disease, Parkinson’s disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.

Journal ArticleDOI
TL;DR: In this paper, the authors combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality.
Abstract: Deregulated gene expression is a hallmark of cancer; however, most studies to date have analyzed short-read RNA sequencing data with inherent limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and Illumina paired-end short-read RNA sequencing to comprehensively survey the transcriptome of gastric cancer (GC), a leading cause of global cancer mortality. We performed full-length transcriptome analysis across 10 GC cell lines covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr positive, genome stable and microsatellite unstable). We identify 60,239 non-redundant full-length transcripts, of which > 66% are novel compared to current transcriptome databases. Novel isoforms are more likely to be cell line and subtype specific, expressed at lower levels with larger number of exons, with longer isoform/coding sequence lengths. Most novel isoforms utilize an alternate first exon, and compared to other alternative splicing categories, are expressed at higher levels and exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting potential changes in their coding sequences. Mapping these alternate promoters to TCGA GC samples, we identify several cancer-associated isoforms, including novel variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding sequences to a larger extent than other isoforms. Analysis of outcome data suggests that novel isoforms may impart additional prognostic information. Our results provide a rich resource of full-length transcriptome data for deeper studies of GC and other gastrointestinal malignancies.

Journal ArticleDOI
TL;DR: A novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells is reported.
Abstract: CD44 is a marker of cancer stem cell (CSC) in many types of tumors. Alternative splicing of its 20 exons generates various CD44 isoforms that have different tissue specific expression and functions, including the CD44 standard isoform (CD44s) encoded by the constant exons and the CD44 variant isoforms (CD44v) with variant exon insertions. Switching between the CD44v and CD44s isoforms plays pivotal roles in tumor progression. Here we reported a novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells. TGF-β1 treatment increased the expression of CD44s and N-cadherin while decreased the expression of CD44v and E-cadherin in DU-145 prostate cancer cells. Other EMT markers and cancer stem cell markers were also upregulated after TGF-β1 treatment. RNAi knockdown of CD44 reversed the phenotype, which could be rescued by overexpressing CD44s but not CD44v, indicating the alternatively spliced isoform CD44s mediated the activity of TGF-β1 treatment. Mechanistically, TGF-β1 treatment induced the phosphorylation, poly-ubiquitination, and degradation of PCBP1, a well-characterized RNA binding protein known to regulate CD44 splicing. RNAi knockdown of PCBP1 was able to mimic TGF-β1 treatment to increase the expression of CD44s, as well as the EMT and cancer stem cell markers. In vitro and in vivo experiments were performed to show that CD44s promoted prostate cancer cell migration, invasion, and tumor initiation. Taken together, we defined a mechanism by which TGF-β1 induces CD44 alternative splicing and promotes prostate cancer progression.