scispace - formally typeset
Search or ask a question
Topic

Exon

About: Exon is a research topic. Over the lifetime, 38308 publications have been published within this topic receiving 1745408 citations. The topic is also known as: exons.


Papers
More filters
Journal ArticleDOI
TL;DR: To the knowledge, this is the first case of circular transcripts being processed from nuclear pre‐mRNA in eukaryotes, and might represent a novel aspect of gene expression and hold some interesting clues about the splicing mechanism.
Abstract: We previously identified novel human ets-1 transcripts in which the normal order of exons is inverted, and demonstrated that although the order of exons is different than in the genomic DNA, splicing of these exons out of order occurs in pairs using genuine splice sites (1). Here we determine the structure of these novel transcripts, showing that they correspond to circular RNA molecules containing only exons in genomic order. These transcripts are stable molecules, localized in the cytoplasmic component of the cells. To our knowledge, this is the first case of circular transcripts being processed from nuclear pre-mRNA in eukaryotes. This new type of transcript might represent a novel aspect of gene expression and hold some interesting clues about the splicing mechanism.

934 citations

Journal ArticleDOI
TL;DR: The authors' results for the first time directly integrate the regulation of miRNA expression into the transcriptional network regulated by p53, and siRNAs corresponding to p53‑induced miRNAs may have potential as cancer therapeutic agents as RNA interference based therapies are currently emerging.
Abstract: In a genome-wide screen for microRNAs regulated by the transcription factor encoded by the p53 tumor suppressor gene we found that after p53-activation the abundance of thirty-four miRNAs was significantly increased, whereas sixteen miRNAs were suppressed. The induction of miR-34a was most pronounced among all differential regulations. Also expression of the primary miR-34a transcript was induced after p53 activation and by DNA damage in a p53-dependent manner. p53 occupied an evolutionarily conserved binding site proximal to the first non-coding exon of miR-34a. Ectopic miR-34a induced apoptosis and a cell cycle arrest in the G1-phase, thereby suppressing tumor cell proliferation. Other p53-induced miRNAs identified here may also have tumor suppressive potential as they are known to suppress the anti-apoptotic factor Bcl2 (miR-15a/16) and the oncogenes RAS and HMGA2 (let-7a). Our results for the first time directly integrate the regulation of miRNA expression into the transcriptional network regulated by p53. siRNAs corresponding to p53-induced miRNAs may have potential as cancer therapeutic agents as RNA interference based therapies are currently emerging.

932 citations

Journal ArticleDOI
21 Dec 2012-Science
TL;DR: The findings suggest that the evolution of alternative splicing has for the most part been very rapid and thatAlternative splicing patterns of most organs more strongly reflect the identity of the species rather than the organ type, with the highest complexity in primates.
Abstract: How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species.

921 citations

Journal ArticleDOI
TL;DR: It is shown that kainic acid‐induced seizures that lead to changes in cellular Ca2+ levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts.
Abstract: Brain-derived neurotrophic factor (BDNF) has important functions in the development of the nervous system and in brain plasticity-related processes such as memory, learning, and drug addiction. Despite the fact that the function and regulation of rodent BDNF gene expression have received close attention during the last decade, knowledge of the structural organization of mouse and rat BDNF gene has remained incomplete. We have identified and characterized several mouse and rat BDNF transcripts containing novel 5′ untranslated exons and introduced a new numbering system for mouse and rat BDNF exons. According to our results both mouse and rat BDNF gene consist of eight 5′ untranslated exons and one protein coding 3′ exon. Transcription of the gene results in BDNF transcripts containing one of the eight 5′ exons spliced to the protein coding exon and in a transcript containing only 5′ extended protein coding exon. We also report the distinct tissue-specific expression profiles of each of the mouse and rat 5′ exon-specific transcripts in different brain regions and nonneural tissues. In addition, we show that kainic acid-induced seizures that lead to changes in cellular Ca2+ levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts. Finally, we confirm that mouse and rat BDNF gene loci do not encode antisense mRNA transcripts, suggesting that mechanisms of regulation for rodent and human BDNF genes differ substantially. © 2006 Wiley-Liss, Inc.

921 citations

Journal ArticleDOI
03 Nov 2011-Nature
TL;DR: This work provides the first evidence that a DNA-binding protein, CCCTC-binding factor (CTCF), can promote inclusion of weak upstream exons by mediating local RNA polymerase II pausing both in a mammalian model system for alternative splicing, CD45, and genome-wide.
Abstract: Alternative splicing of pre-messenger RNA is a key feature of transcriptome expansion in eukaryotic cells, yet its regulation is poorly understood. Spliceosome assembly occurs co-transcriptionally, raising the possibility that DNA structure may directly influence alternative splicing. Supporting such an association, recent reports have identified distinct histone methylation patterns, elevated nucleosome occupancy and enriched DNA methylation at exons relative to introns. Moreover, the rate of transcription elongation has been linked to alternative splicing. Here we provide the first evidence that a DNA-binding protein, CCCTC-binding factor (CTCF), can promote inclusion of weak upstream exons by mediating local RNA polymerase II pausing both in a mammalian model system for alternative splicing, CD45, and genome-wide. We further show that CTCF binding to CD45 exon 5 is inhibited by DNA methylation, leading to reciprocal effects on exon 5 inclusion. These findings provide a mechanistic basis for developmental regulation of splicing outcome through heritable epigenetic marks.

916 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,618
20222,004
2021905
2020908
2019887
2018909