scispace - formally typeset
Search or ask a question
Topic

Exon

About: Exon is a research topic. Over the lifetime, 38308 publications have been published within this topic receiving 1745408 citations. The topic is also known as: exons.


Papers
More filters
Journal ArticleDOI
TL;DR: The abrogation of the SF2/ASF-dependent ESE is the basis for inefficient inclusion of exon 7 in SMN2, resulting in the spinal muscular atrophy phenotype.
Abstract: Alteration of correct splicing patterns by disruption of an exonic splicing enhancer may be a frequent mechanism by which point mutations cause genetic diseases. Spinal muscular atrophy results from the lack of functional survival of motor neuron 1 gene (SMN1), even though all affected individuals carry a nearly identical, normal SMN2 gene. SMN2 is only partially active because a translationally silent, single-nucleotide difference in exon 7 causes exon skipping. Using ESE motif-prediction tools, mutational analysis and in vivo and in vitro splicing assays, we show that this single-nucleotide change occurs within a heptamer motif of an exonic splicing enhancer, which in SMN1 is recognized directly by SF2/ASF. The abrogation of the SF2/ASF-dependent ESE is the basis for inefficient inclusion of exon 7 in SMN2, resulting in the spinal muscular atrophy phenotype.

724 citations

Journal ArticleDOI
01 Aug 2000-Cytokine
TL;DR: A significant correlation was observed between lipopolysaccharide stimulated peripheral blood mononuclear cell (PBMC) VEGF protein production and genotype for the +405 polymorphism and a combined sequence specific priming (SSP) PCR typing system to determine the cis/trans orientation of each allele and hence, ascertain haplotypes.

720 citations

Journal ArticleDOI
TL;DR: P‐glycoprotein, the gene product of MDR1, confers multidrug resistance against antineoplastic agents but also plays an important role in the bioavailability of common drugs in medical treatment.
Abstract: Background P-glycoprotein, the gene product of MDR1, confers multidrug resistance against antineoplastic agents but also plays an important role in the bioavailability of common drugs in medical treatment. Various polymorphisms in the MDR1 gene were recently identified. A silent mutation in exon 26 (C3435T) was correlated with intestinal P-glycoprotein expression and oral bioavailability of digoxin. Objective We wanted to establish easy-to-use and cost-effective genotyping assays for the major known MDR1 single nucleotide polymorphisms and study the allelic frequency distribution of the single nucleotide polymorphisms in a large sample of volunteers. Methods In this study, the distribution of the major MDR1 alleles was determined in 461 white volunteers with the use of polymerase chain reaction and restriction fragment length polymorphism. Results Five amino acid exchanges were found with allelic frequencies of 11.2% for Asn21Asp and 5.5% for Ser400Asn. Strikingly, in exon 21 three variants were discovered at the same locus: 2677G (56.4%), 2677T (41.6%), and 2677A (1.9%), coding for 893Ala, Ser, or Thr. A novel missense Gln1107Pro mutation was found in two cases (0.2%). The highest frequencies were observed for intronic and silent polymorphisms; C3435T occurred in 53.9% of the subjects heterozygously, and 28.6% of individuals were homozygous carriers of 3435T/T with functionally restrained P-glycoprotein. Conclusion This study provides the first analysis of MDR1 variant genotype distribution in a large sample of white subjects. It gives a basis for large-scale clinical investigations on the functional role of MDR1 allelic variants for bioavailability of a substantial number of drugs. Clinical Pharmacology & Therapeutics (2001) 69, 169–174; doi: 10.1067/mcp.2001.114164

720 citations

Journal ArticleDOI
TL;DR: It is suggested that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site.
Abstract: Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.

718 citations

Journal ArticleDOI
TL;DR: Patients from Dutch and Chinese families with MSH2-deficient tumors carrying heterozygous germline deletions of the last exons of TACSTD1, a gene directly upstream of MSH1 encoding Ep-CAM, are described, revealing a correlation between activity of the mutated TAC STD1 allele and epigenetic inactivation of the corresponding MSH 2 allele.
Abstract: Lynch syndrome patients are susceptible to colorectal and endometrial cancers owing to inactivating germline mutations in mismatch repair genes, including MSH2 (ref. 1). Here we describe patients from Dutch and Chinese families with MSH2-deficient tumors carrying heterozygous germline deletions of the last exons of TACSTD1, a gene directly upstream of MSH2 encoding Ep-CAM. Due to these deletions, transcription of TACSTD1 extends into MSH2. The MSH2 promoter in cis with the deletion is methylated in Ep-CAM positive but not in Ep-CAM negative normal tissues, thus revealing a correlation between activity of the mutated TACSTD1 allele and epigenetic inactivation of the corresponding MSH2 allele. Gene silencing by transcriptional read-through of a neighboring gene in either sense, as demonstrated here, or antisense direction, could represent a general mutational mechanism. Depending on the expression pattern of the neighboring gene that lacks its normal polyadenylation signal, this may cause either generalized or mosaic patterns of epigenetic inactivation.

716 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
Transcription factor
82.8K papers, 5.4M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,618
20222,004
2021905
2020908
2019887
2018909