scispace - formally typeset
Search or ask a question
Topic

Exoskeleton Device

About: Exoskeleton Device is a research topic. Over the lifetime, 612 publications have been published within this topic receiving 9479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible, and the development of an asynchronous brain-machine interface (BMI), based on steady-state visual evoked potentials (SSVEPs).
Abstract: Objective. We have developed an asynchronous brain–machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

183 citations

Journal ArticleDOI
TL;DR: Results after only 5 sessions suggest that persons with tetraplegia and paraplegia learn to use the Indego exoskeleton quickly and can manage a variety of surfaces.
Abstract: BACKGROUND: Loss of legged mobility due to spinal cord injury (SCI) is associated with multiple physiological and psychological impacts. Powered exoskeletons offer the possibility of regained mobility and reversal or prevention of the secondary effects associated with immobility. OBJECTIVE: This study was conducted to evaluate mobility outcomes for individuals with SCI after 5 gait-training sessions with a powered exoskeleton, with a primary goal of characterizing the ease of learning and usability of the system. METHODS: Sixteen subjects with SCI were enrolled in a pilot clinical trial at Shepherd Center, Atlanta, Georgia, with injury levels ranging from C5 complete to L1 incomplete. An investigational Indego exoskeleton research kit was evaluated for ease of use and efficacy in providing legged mobility. Outcome measures of the study included the 10-meter walk test (10MWT) and the 6-minute walk test (6MWT) as well as measures of independence including donning and doffing times and the ability to walk on various surfaces. RESULTS: At the end of 5 sessions (1.5 hours per session), average walking speed was 0.22 m/s for persons with C5-6 motor complete tetraplegia, 0.26 m/s for T1-8 motor complete paraplegia, and 0.45 m/s for T9-L1 paraplegia. Distances covered in 6 minutes averaged 64 meters for those with C5-6, 74 meters for T1-8, and 121 meters for T9-L1. Additionally, all participants were able to walk on both indoor and outdoor surfaces. CONCLUSIONS: Results after only 5 sessions suggest that persons with tetraplegia and paraplegia learn to use the Indego exoskeleton quickly and can manage a variety of surfaces. Walking speeds and distances achieved also indicate that some individuals with paraplegia can quickly become limited community ambulators using this system. Language: en

155 citations

Journal Article
TL;DR: The new powered exoskeleton ReWalk (Argo Medical Technologies Ltd) was developed to have an alternative mobility solution to the wheelchair and rehabilitation treatment for individuals with severe walking impairments, enabling them to stand, walk, ascend/descent stairs and more.
Abstract: Difficulty in walking is a major feature of neurological disease, and loss of mobility is the activity of daily living on which patients place the greatest value. The impact on patients is enormous, with negative ramifications on their participation in social, vocational, and recreational activities. In current clinical practice the gait restoration with robotic device is an integral part of rehabilitation program. Robot therapy involves the use of a robot exoskeleton device or end-effector device to help the patient retrain motor coordination by performing well-focused and carefully directed repetitive practice. The exoskeleton, as an assistive device, is also an external structural mechanism with joints and links corresponding to those of the human body. These robots use joint trajectories of the entire gait cycle and offer a uniform (more or less) stiff control along this trajectory. In this field the new powered exoskeleton ReWalk (Argo Medical Technologies Ltd) was developed to have an alternative mobility solution to the wheelchair and rehabilitation treatment for individuals with severe walking impairments, enabling them to stand, walk, ascend/descent stairs and more. The end-effector-based robot is a device with footplates placed on a double crank and rocker gear system. Alternatives to powered exoskeletons are devices that use movable footplates to which the patient's feet are attached. All devices include some form of body weight support. Prominent goals in the field include: developing implementable technologies that can be easily used by patients, therapists, and clinicians; enhancing the efficacy of clinician's therapies and increasing the ease of activities in the daily lives of patients.

142 citations

Journal ArticleDOI
TL;DR: The exoskeleton reduced muscle activity and perceived effort by the arms, and had no significant negative effect on the trunk and lower body with regards to muscle activity, perceived effort and localised discomfort.

140 citations

Journal ArticleDOI
01 Apr 2016
TL;DR: Experimental data indicates that the cooperative control system provided consistent and repeatable gait motions and reduced the torque and power output required from the hip and knee motors of the exoskeleton compared to walking without FES.
Abstract: This paper describes a hybrid system that combines a powered lower limb exoskeleton with functional electrical stimulation (FES) for gait restoration in persons with paraplegia. The general control structure consists of two control loops: a motor control loop, which utilizes joint angle feedback control to control the output of the joint motor to track the desired joint trajectories, and a muscle control loop, which utilizes joint torque profiles from previous steps to shape the muscle stimulation profile for the subsequent step in order to minimize the motor torque contribution required for joint angle trajectory tracking. The implementation described here incorporates stimulation of the hamstrings and quadriceps muscles, such that the hip joints are actuated by the combination of hip motors and the hamstrings, and the knee joints are actuated by the combination of knee motors and the quadriceps. In order to demonstrate efficacy, the control approach was implemented on three paraplegic subjects with motor complete spinal cord injuries ranging from levels T6 to T10. Experimental data indicates that the cooperative control system provided consistent and repeatable gait motions and reduced the torque and power output required from the hip and knee motors of the exoskeleton compared to walking without FES.

140 citations


Network Information
Related Topics (5)
Robot control
35.2K papers, 578.8K citations
77% related
Robot
103.8K papers, 1.3M citations
77% related
Mobile robot
66.7K papers, 1.1M citations
74% related
Actuator
66.2K papers, 689.9K citations
73% related
Torque
80.7K papers, 707.9K citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202142
202064
201982
201880
2017107