scispace - formally typeset
Search or ask a question
Topic

Expectation–maximization algorithm

About: Expectation–maximization algorithm is a research topic. Over the lifetime, 11823 publications have been published within this topic receiving 528693 citations. The topic is also known as: EM algorithm & Expectation Maximization.


Papers
More filters
Journal ArticleDOI
TL;DR: An Expectation-Maximization (EM) algorithm for adjusting the parameters of the tree-structured architecture for supervised learning and an on-line learning algorithm in which the parameters are updated incrementally.
Abstract: We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.

2,418 citations

Book
01 Jan 1988
TL;DR: The Mixture Likelihood Approach to Clustering and the Case Study Homogeneity of Mixing Proportions Assessing the Performance of the Mixture likelihood approach toClustering.
Abstract: General Introduction Introduction History of Mixture Models Background to the General Classification Problem Mixture Likelihood Approach to Clustering Identifiability Likelihood Estimation for Mixture Models via EM Algorithm Start Values for EMm Algorithm Properties of Likelihood Estimators for Mixture Models Information Matrix for Mixture Models Tests for the Number of Components in a Mixture Partial Classification of the Data Classification Likelihood Approach to Clustering Mixture Models with Normal Components Likelihood Estimation for a Mixture of Normal Distribution Normal Homoscedastic Components Asymptotic Relative Efficiency of the Mixture Likelihood Approach Expected and Observed Information Matrices Assessment of Normality for Component Distributions: Partially Classified Data Assessment of Typicality: Partially Classified Data Assessment of Normality and Typicality: Unclassified Data Robust Estimation for Mixture Models Applications of Mixture Models to Two-Way Data Sets Introduction Clustering of Hemophilia Data Outliers in Darwin's Data Clustering of Rare Events Latent Classes of Teaching Styles Estimation of Mixing Proportions Introduction Likelihood Estimation Discriminant Analysis Estimator Asymptotic Relative Efficiency of Discriminant Analysis Estimator Moment Estimators Minimum Distance Estimators Case Study Homogeneity of Mixing Proportions Assessing the Performance of the Mixture Likelihood Approach to Clustering Introduction Estimators of the Allocation Rates Bias Correction of the Estimated Allocation Rates Estimated Allocation Rates of Hemophilia Data Estimated Allocation Rates for Simulated Data Other Methods of Bias Corrections Bias Correction for Estimated Posterior Probabilities Partitioning of Treatment Means in ANOVA Introduction Clustering of Treatment Means by the Mixture Likelihood Approach Fitting of a Normal Mixture Model to a RCBD with Random Block Effects Some Other Methods of Partitioning Treatment Means Example 1 Example 2 Example 3 Example 4 Mixture Likelihood Approach to the Clustering of Three-Way Data Introduction Fitting a Normal Mixture Model to Three-Way Data Clustering of Soybean Data Multidimensional Scaling Approach to the Analysis of Soybean Data References Appendix

2,397 citations

Posted Content
TL;DR: In this paper, the joint maximum likelihood estimator of the structural parameters is not consistent as the number of groups increases, with a fixed number of observations per group, and a conditional likelihood function is maximized, conditional on sufficient statistics for the incidental parameters.
Abstract: In data with a group structure, incidental parameters are included to control for missing variables. Applications include longitudinal data and sibling data. In general, the joint maximum likelihood estimator of the structural parameters is not consistent as the number of groups increases, with a fixed number of observations per group. Instead a conditional likelihood function is maximized, conditional on sufficient statistics for the incidental parameters. In the logit case, a standard conditional logit program can be used. Another solution is a random effects model, in which the distribution of the incidental parameters may depend upon the exogenous variables.

2,338 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a general procedure by which any number of parameters of the factor analytic model can be held fixed at any values and the remaining free parameters estimated by the maximum likelihood method.
Abstract: We describe a general procedure by which any number of parameters of the factor analytic model can be held fixed at any values and the remaining free parameters estimated by the maximum likelihood method. The generality of the approach makes it possible to deal with all kinds of solutions: orthogonal, oblique and various mixtures of these. By choosing the fixed parameters appropriately, factors can be defined to have desired properties and make subsequent rotation unnecessary. The goodness of fit of the maximum likelihood solution under the hypothesis represented by the fixed parameters is tested by a large samplex 2 test based on the likelihood ratio technique. A by-product of the procedure is an estimate of the variance-covariance matrix of the estimated parameters. From this, approximate confidence intervals for the parameters can be obtained. Several examples illustrating the usefulness of the procedure are given.

2,326 citations

Journal ArticleDOI
TL;DR: The novelty of the approach is that it does not use a model selection criterion to choose one among a set of preestimated candidate models; instead, it seamlessly integrate estimation and model selection in a single algorithm.
Abstract: This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective "unsupervised" is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach.

2,182 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
91% related
Deep learning
79.8K papers, 2.1M citations
84% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Cluster analysis
146.5K papers, 2.9M citations
84% related
Artificial neural network
207K papers, 4.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023114
2022245
2021438
2020410
2019484
2018519