scispace - formally typeset
Topic

Extended Kalman filter

About: Extended Kalman filter is a(n) research topic. Over the lifetime, 25974 publication(s) have been published within this topic receiving 517984 citation(s).
Papers
More filters

Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

10,977 citations


4


Journal ArticleDOI
01 Apr 1993-
TL;DR: An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters, represented as a set of random samples, which are updated and propagated by the algorithm.
Abstract: An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters. The required density of the state vector is represented as a set of random samples, which are updated and propagated by the algorithm. The method is not restricted by assumptions of linear- ity or Gaussian noise: it may be applied to any state transition or measurement model. A simula- tion example of the bearings only tracking problem is presented. This simulation includes schemes for improving the efficiency of the basic algorithm. For this example, the performance of the bootstrap filter is greatly superior to the standard extended Kalman filter.

7,559 citations


Journal ArticleDOI
08 Nov 2004-
TL;DR: The motivation, development, use, and implications of the UT are reviewed, which show it to be more accurate, easier to implement, and uses the same order of calculations as linearization.
Abstract: The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear systems. However, more than 35 years of experience in the estimation community has shown that is difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale of the updates. Many of these difficulties arise from its use of linearization. To overcome this limitation, the unscented transformation (UT) was developed as a method to propagate mean and covariance information through nonlinear transformations. It is more accurate, easier to implement, and uses the same order of calculations as linearization. This paper reviews the motivation, development, use, and implications of the UT.

5,559 citations


2


Book
30 Mar 1990-
Abstract: List of figures Acknowledgement Preface Notation and conventions List of abbreviations 1. Introduction 2. Univariate time series models 3. State space models and the Kalman filter 4. Estimation, prediction and smoothing for univariate structural time series models 5. Testing and model selection 6. Extensions of the univariate model 7. Explanatory variables 8. Multivariate models 9. Continuous time Appendices Selected answers to exercises References Author index Subject index.

5,069 citations


Proceedings ArticleDOI
28 Jul 1997-
TL;DR: It is argued that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
Abstract: The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearizes all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterize mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalizes elegantly to nonlinear systems without the linearization steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.

4,976 citations


Network Information
Related Topics (5)
Kalman filter

48.3K papers, 936.7K citations

95% related
Invariant extended Kalman filter

7K papers, 187.7K citations

95% related
Fast Kalman filter

6.5K papers, 170.6K citations

93% related
Particle filter

15K papers, 322.3K citations

92% related
Adaptive control

60.1K papers, 1.2M citations

92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
2021884
20201,014
20191,138
20181,158
20171,460

Top Attributes

Show by:

Topic's top 5 most impactful authors

Edgar N. Sanchez

70 papers, 403 citations

Alma Y. Alanis

57 papers, 560 citations

Chingiz Hajiyev

39 papers, 534 citations

Stergios I. Roumeliotis

32 papers, 3K citations

Roland Siegwart

28 papers, 2.8K citations