scispace - formally typeset
Search or ask a question
Topic

Extended X-ray absorption fine structure

About: Extended X-ray absorption fine structure is a research topic. Over the lifetime, 10452 publications have been published within this topic receiving 276744 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the structures and valence states of iron ions in several iron phosphate glasses with batch compositions similar to 40Fe2O3-60P2O5 (mol%) have been investigated using Mossbauer spectroscopy, X-ray absorption fine-structure spectrographs (XAFS), XPS, differential thermal (DTA), differential thermal and thermo-gravimetric (TGA) analysis and x-ray and neutron diffraction.
Abstract: The structures and valence states of iron ions in several iron phosphate glasses with batch compositions similar to 40Fe2O3-60P2O5 (mol%) have been investigated using Mossbauer spectroscopy, X-ray absorption fine-structure spectroscopy (XAFS), X-ray photoelectron spectroscopy (XPS), differential thermal (DTA) and thermo-gravimetric (TGA) analysis and X-ray and neutron diffraction. Mossbauer spectra show that a redox equilibria corresponding to an Fe(II)/[Fe(II) + Fe(III)] ratio of 0.2–0.4 is reached under processing conditions described in this paper. Even though the valence state of iron ions in the glass appears to be insensitive to the oxygen content in the melting atmosphere, the Fe(II) content can be increased within the observed range of redox equilibria by increasing the partial pressure of a reducing gas in the melting atmosphere. Large amounts of Fe(II), Fe(II)/[Fe(II) + Fe(III)] ≥ 0.4, appear to be detrimental to the glass-forming ability of the iron phosphate melts. The local structure of the iron phosphate glasses appears to be related to the short range structure of crystalline Fe3(P2O7)2 which consists of a network of (Fe3O12)−16 clusters. These clusters consist of one iron(II) ion and two iron(III) ions in sixfold coordination with near-neighbor oxygen ions. The (Fe3O12)−16 clusters are interconnected via (P2O7)−4 groups. Compared to other phosphate glasses, the proposed structure for iron phosphate glasses contain a smaller number of POP bonds, a feature which is believed to be responsible for the unusually good chemical durability of iron phosphate glasses.

163 citations

Journal ArticleDOI
TL;DR: Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphously deposition regions are presented, highlighting a unique structure–property relationship.
Abstract: A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InO x polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure-property relationship.

163 citations

Journal ArticleDOI
06 Jan 1999-Langmuir
TL;DR: In this paper, the preparation, structural characterization, and support interactions experienced by two different compositions of Pt−Ru nanoparticles supported on several carbons (carbon black, fullerene soot, and desulfurized carbon black) were described.
Abstract: We describe the preparation, structural characterization, and support interactions experienced by two different compositions of Pt−Ru nanoparticles supported on several carbons (carbon black, fullerene soot, and desulfurized carbon black). The bimetallic nanoparticles, obtained by reduction of the neutral molecular precursors PtRu5C(CO)16 and Pt2Ru4(CO)18 (the latter of which lacks a central “stabilizing” carbide core) at elevated temperatures in a hydrogen atmosphere, show a structural homology, exhibiting exceptionally narrow size and compositional distributions. A detailed structural picture of the nanoparticles has been deduced on the basis of in-situ extended X-ray absorption fine structure (EXAFS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray analysis (EDX), and X-ray absorption near edge structure (XANES). These techniques reveal that the bimetallic nanoparticles have Pt/Ru compositions of 1:5 and 2:4, respectively, and average diameters lying between 1.0 and 1.5 nm. Th...

161 citations

Journal ArticleDOI
TL;DR: Extended x-ray absorption fine structure (EXAFS) measurements were performed for concentrated aqueous rare earth perchlorate solutions in the liquid state at room temperature and in the glassy state at liquid nitrogen temperature as discussed by the authors.
Abstract: Extended x‐ray absorption fine structure (EXAFS) measurements were performed for concentrated aqueous rare earth perchlorate solutions (R=28; R is the moles of water per mole of salt) in the liquid state at room temperature and in the glassy state at liquid nitrogen temperature. The quantitative analysis of the EXAFS data has revealed that the hydration number changes from about nine for light rare earth ions to about eight for heavy rare earth ions through the intermediate ions of Sm3+ ∼Eu3+ in both liquid and glassy states. The average Ln3+ –OH2 distances were determined and they are in agreement with previously reported values from x‐ray and neutron diffraction. The Debye–Waller factor of the average Ln3+ –OH2 bonds for the light rare earth ions was larger than that for the heavy ions, suggesting that the hydration shell of the light rare earth ions is statically disordered, consisting of different Ln3+ –OH2 bonds.

161 citations


Network Information
Related Topics (5)
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Amorphous solid
117K papers, 2.2M citations
88% related
Oxide
213.4K papers, 3.6M citations
88% related
Thin film
275.5K papers, 4.5M citations
87% related
Graphene
144.5K papers, 4.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023110
2022264
2021156
2020164
2019164
2018151