scispace - formally typeset
Search or ask a question
Topic

Extinction ratio

About: Extinction ratio is a research topic. Over the lifetime, 8541 publications have been published within this topic receiving 111908 citations.


Papers
More filters
Journal ArticleDOI
Carl Pfeiffer1, Cheng Zhang1, Vishva Ray1, L. Jay Guo1, Anthony Grbic1 
TL;DR: It is experimentally shown that bianisotropic metasurfaces allow for extreme polarization control of light with high performance and can be used in the future to completely control the phase, amplitude, and polarization of light.
Abstract: It is experimentally shown that bianisotropic metasurfaces allow for extreme polarization control of light with high performance. A metasurface providing asymmetric transmission (i.e., polarization conversion) of circularly polarized light is reported at a wavelength of $1.5\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$. The experimental transmittance and extinction ratio are 50% and $20:1$, which represents an order of magnitude improvement over previous optical structures exhibiting asymmetric transmission. The metasurface consists of patterned gold sheets that are spaced at a subwavelength distance from each other. The same design and fabrication processes can be used in the future to completely control the phase, amplitude, and polarization of light.

334 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized.
Abstract: Wire grid polarizers (WGPs), periodic nano-optical metasurfaces, are convenient polarizing elements for many optical applications. However, they are still inadequate in the deep ultraviolet spectral range. It is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized. This requirement is compared to refractive index models considering intraband and interband absorption processes. It is elucidated why the extinction ratio of metallic WGPs intrinsically humble in the deep ultraviolet, whereas wide bandgap semiconductors are superior material candidates in this spectral range. To demonstrate this, the design, fabrication, and optical characterization of a titanium dioxide WGP are presented. At a wavelength of 193 nm an unprecedented extinction ratio of 384 and a transmittance of 10% is achieved.

332 citations

Journal ArticleDOI
TL;DR: In this article, the free-space micromachined optical switches (FS-MOS) demonstrated in this paper represent a means of filling this network need by combining the advantages of free-rotating hinged micromirrors with the virtues of integrated optics.
Abstract: Optical crossconnects with large port counts are fast becoming critical components for high-capacity optical transport networks. The free-space micromachined optical switches (FS-MOS) demonstrated in this letter represent a means of filling this network need by combining the advantages of free-space interconnection with the virtues of integrated optics. Featuring free-rotating hinged micromirrors, the switch overcomes the common drawback of mechanical-type switches, namely long switching time. Measurements have revealed switching times less than 700 /spl mu/s, crosstalk less than -60 dB, extinction ratio greater than 60 dB, negligible polarization-dependent loss, and excellent bit-error-rate (BER) performance.

269 citations

Journal ArticleDOI
TL;DR: This work describes an ultrasmall polarization splitter based on a simple directional coupler consisting of silicon wire waveguides that represents a first step towards accomplishing an Ultrasmall optical circuit with polarization diversity based on silicon wireWaveguides.
Abstract: We describe an ultrasmall polarization splitter based on a simple directional coupler consisting of silicon wire waveguides. The size is only 7 x 16 microm(2), and the polarization extinction ratio is about 15 dB for a single coupler. A double-coupler structure improves the extinction ratio to over 20 dB. The excess loss is smaller than 0.5 dB for both types of device. In the device, the shape of the high-speed waveform is retained at any angle of polarization. Our polarization splitter represents a first step towards accomplishing an ultrasmall optical circuit with polarization diversity based on silicon wire waveguides.

268 citations

Journal ArticleDOI
TL;DR: In this paper, a group of 61,111 red clump (RC) stars were selected as tracers by stellar parameters from APOGEE survey and the color excess ratio (CER) and the relative extinction were derived from spectroscopic, astrometric, and photometric data.
Abstract: A precise interstellar dust extinction law is critically important to interpret observations. There are two indicators of extinction: the color excess ratio (CER) and the relative extinction. Compared to the CER, the wavelength-dependent relative extinction is more challenging to be determined. In this work, we combine spectroscopic, astrometric, and photometric data to derive high-precision CERs and relative extinction from optical to mid-infrared (IR) bands. A group of 61,111 red clump (RC) stars are selected as tracers by stellar parameters from APOGEE survey. The multiband photometric data are collected from Gaia, APASS, SDSS, Pan-STARRS1, 2MASS, and WISE surveys. For the first time, we calibrate the curvature of CERs in determining CERs E(lambda-GRP)/E(GBP-GRP) from color excess--color excess diagrams. Through elaborate uncertainty analysis, we conclude that the precision of our CERs is significantly improved (sigma < 0.015). With parallaxes from Gaia DR2, we calculate the relative extinction A_GBP/A_GRP for 5051 RC stars. By combining the CERs with the A_GBP/A_GRP, the optical--mid-IR extinction A_lambda/A_GRP has been determined in a total of 21 bands. Given no bias toward any specific environment, our extinction law represents the average extinction law with the total-to-selective extinction ratio Rv=3.16+-0.15. Our observed extinction law supports an adjustment in parameters of the CCM Rv=3.1 curve, together with the near-IR power-law index alpha=2.07+-0.03. The relative extinction values of HST and JWST near-IR bandpasses are predicted in 2.5% precision. As the observed reddening/extinction tracks are curved, the curvature correction needs to be considered when applying extinction correction.

261 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Resonator
76.5K papers, 1M citations
86% related
Plasmon
32.5K papers, 983.9K citations
85% related
Diode
71.5K papers, 812.4K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023187
2022429
2021371
2020449
2019468
2018441