scispace - formally typeset
Search or ask a question
Topic

Extinction ratio

About: Extinction ratio is a research topic. Over the lifetime, 8541 publications have been published within this topic receiving 111908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Unique four-state feature of the cell is obtained and their applications in optical logic devices are discussed.
Abstract: A diffraction grating is proposed by periodically defining the liquid-crystal director distribution to form alternate parallel aligned and twist nematic regions in a cell placed between two crossed polarizers. Based on the combined phase and amplitude modulation, both 1D and 2D tunable gratings are demonstrated. Low voltage ON/OFF switching of 1st order diffracted light with extinction ratio over 80 is achieved within a small voltage interval of 0.15 Vrms. Unique four-state feature of the cell is obtained and their applications in optical logic devices are discussed.

78 citations

Journal ArticleDOI
TL;DR: The design of a division-of-focal-plane polarization imaging sensor, which is also spectrally selective in the visible regime, is presented and its extensive spectral and polarimetric characterization is described.
Abstract: Current division-of-focal-plane polarization imaging sensors can perceive intensity and polarization in real time with high spatial resolution, but are oblivious to spectral information. We present the design of such a sensor, which is also spectrally selective in the visible regime. We describe its extensive spectral and polarimetric characterization. The sensor has a pixel pitch of 5 µm and an imaging array of 168 by 256 elements. Each element comprises spectrally sensitive vertically stacked photodetectors integrated with a 140 nm pitch nanowire linear polarizer. The sensor has a maximum measured SNR of 45 dB, extinction ratio of ~3.5, QE of 12%, and linearity error of 1% in the green channel. We present sample spectral-polarization images.

78 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect is demonstrated, which enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB.
Abstract: We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%–90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a 10-μm-thick single-crystal LiNbO3 films obtained by crystal ion slicing were used for electro-optic modulation.
Abstract: Electro-optic modulation is demonstrated in 10-μm-thick single-crystal LiNbO3 films obtained by crystal ion slicing. This technique uses ion implantation of single-crystal bulk samples followed by selective etching. The measured electro-optic response of these films is comparable, within experimental error, to that of single-crystal bulk LiNbO3 and is superior to previously reported values for epitaxial polycrystalline thin films. The product of half-wave voltage and modulator length, VπL, is 8 V cm. Post lift-off annealing is shown to be of key importance in improving the modulator extinction ratio.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a new scheme to generate an optical millimeter wave with octupling of the local oscillator via a nested LiNbO3 Mach-Zehnder modulator (MZM) is proposed and implemented by numerical simulation.
Abstract: What we believe to be a new scheme to generate an optical millimeter wave with octupling of the local oscillator via a nested LiNbO3 Mach-Zehnder modulator (MZM) is proposed and implemented by numerical simulation. Since the response frequency of the modulator and the local frequency are largely reduced, the bandwidth requirement of the transmitter to the optical and electrical components is reduced greatly. Then, the parameters of the nested modulator are analyzed theoretically, and we find that both the extinction ratio of the MZM and the phase imbalance between its two arms have influence on the performance of the generated optical millimeter wave.

78 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
92% related
Optical fiber
167K papers, 1.8M citations
92% related
Resonator
76.5K papers, 1M citations
86% related
Plasmon
32.5K papers, 983.9K citations
85% related
Diode
71.5K papers, 812.4K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023187
2022429
2021371
2020449
2019468
2018441