scispace - formally typeset

Topic

Extremal optimization

About: Extremal optimization is a(n) research topic. Over the lifetime, 1168 publication(s) have been published within this topic receiving 104943 citation(s).


Papers
More filters
Journal ArticleDOI
13 May 1983-Science
Abstract: There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.

38,868 citations

Journal ArticleDOI
01 Feb 1996
TL;DR: It is shown how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling, and the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.
Abstract: An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

10,378 citations

Journal ArticleDOI
TL;DR: The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and it is concluded comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.
Abstract: This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSPs. Ants cooperate using an indirect form of communication mediated by a pheromone they deposit on the edges of the TSP graph while building solutions. We study the ACS by running experiments to understand its operation. The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and we conclude comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.

7,152 citations

Book
01 Jan 2004
Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,855 citations

Journal ArticleDOI
01 Feb 2001
TL;DR: A new heuristic algorithm, mimicking the improvisation of music players, has been developed and named Harmony Search (HS), which is illustrated with a traveling salesman problem (TSP), a specific academic optimization problem, and a least-cost pipe network design problem.
Abstract: Many optimization problems in various fields have been solved using diverse optimization al gorithms. Traditional optimization techniques such as linear programming (LP), non-linear programming (NL...

4,575 citations

Network Information
Related Topics (5)
Genetic algorithm

67.5K papers, 1.2M citations

85% related
Optimization problem

96.4K papers, 2.1M citations

81% related
Artificial neural network

207K papers, 4.5M citations

80% related
Cluster analysis

146.5K papers, 2.9M citations

80% related
Fuzzy logic

151.2K papers, 2.3M citations

78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20217
20209
201922
201815
201744
201657