scispace - formally typeset
Search or ask a question
Topic

Fabrication

About: Fabrication is a research topic. Over the lifetime, 20475 publications have been published within this topic receiving 235676 citations.


Papers
More filters
Patent
23 Dec 1993
TL;DR: In this article, an IC fabrication process involves forming electronic devices on a semiconductor substrate and a metal layer is deposited thereover and then patterned to interconnect the semiconductor devices.
Abstract: An integrated circuit (IC) fabrication process involves forming electronic devices on a semiconductor substrate. A metal layer is deposited thereover and then patterned to interconnect the semiconductor devices. A dielectric layer is deposited over the metal layer and substrate. The dielectric layer is etched back to prepare for the deposition of additional metal and dielectric layers. The etched surface is scanned by an atomic force microscope (AFM) to gather data representing the wafer surface roughness. The data is evaluated by a computer to generate at least one surface roughness signal. Depending on the value of the surface roughness signal, the IC fabrication process continues with the next step, a remedial action is taken, the IC fabrication process is adjusted for subsequent wafers, or the wafer is discarded.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a magnetically responsive and flexible superhydrophobic photothermal film (PFe-PCS) consisting of polydimethylsiloxane (PDMS), iron powder (Fe), and candle soot (CS) was demonstrated.

71 citations

Journal ArticleDOI
TL;DR: In this article, the current fabrication methods of ceramic foams and their properties and most relevant applications are reviewed. (orig. 2003). And the properties and applications of these methods are discussed.
Abstract: This paper reviews the current fabrication methods of ceramic foams and discusses their properties and most relevant applications. (orig.)

71 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive review of the development of nanocellulose materials for sustainable energy storage, particularly on supercapacitors, is presented and summarized, followed by highlighting the use of natural nanocellulate for constructing composite electrode materials including two-dimensional film electrodes, and three-dimensional aerogel electrodes for supercapACitors.
Abstract: With the increasing demand for sustainable energy storage systems, the development of various advanced materials from a renewable source is imminent. Owing to the advantages of high specific surface area, unique nanostructure, modifiability, and excellent mechanical strength, nanocellulose integrated with other conductive materials, such as nanocarbons, conducting polymers, and metal oxides, has been emerged as promising candidate materials for green and renewable energy storage devices. Besides, nanocellulose-derived carbon materials with good electrical conductivity and tunable microstructures can be fabricated via simple carbonization, which has been widely used as supercapacitor electrode materials. Herein, we present a comprehensive review that focuses on the development of nanocellulose materials for sustainable energy storage, particularly on supercapacitors. The fabrication strategies of nanocellulose-derived hybrid materials are first presented and summarized, followed by highlighting the use of natural nanocellulose for constructing composite electrode materials including two-dimension film electrodes, and three-dimension aerogel electrodes for supercapacitors. In addition, the possible limitations and potentials of nanocellulose in supercapacitors are outlooked.

71 citations

Journal ArticleDOI
TL;DR: By correcting the aberration based on experimentally determined values, it is shown that the size of written structures decreases dramatically, which allows the fabrication of high quality micro-structures such as three-dimensional photonic crystals.
Abstract: We present the use of a liquid crystal spatial light modulator to correct for the refractive-index mismatch induced spherical aberration in a high refractive-index lithium niobate crystal when a low repetition rate amplified laser is used for the direct fabrication of three-dimensional micro-structures. By correcting the aberration based on experimentally determined values, we show that the size of written structures decreases dramatically, which allows the fabrication of high quality micro-structures such as three-dimensional photonic crystals. We demonstrate that, through the use of adaptive optics, the fabrication depth and the stopgap strength in the corresponding photonic crystals are increased by a factor of two to three.

71 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Graphene
144.5K papers, 4.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20235,291
202210,627
2021845
2020805
2019944