scispace - formally typeset
Search or ask a question
Topic

Fabrication

About: Fabrication is a research topic. Over the lifetime, 20475 publications have been published within this topic receiving 235676 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple yet highly reproducible method to fabricate metallic electrodes with nanometer separation is presented, achieved by passing a large electrical current through a gold nanowire defined by electron-beam lithography and shadow evaporation.
Abstract: A simple yet highly reproducible method to fabricate metallic electrodes with nanometer separation is presented. The fabrication is achieved by passing a large electrical current through a gold nanowire defined by electron-beam lithography and shadow evaporation. The current flow causes the electromigration of gold atoms and the eventual breakage of the nanowire. The breaking process yields two stable metallic electrodes separated by ∼1 nm with high efficiency. These electrodes are ideally suited for electron-transport studies of chemically synthesized nanostructures, and their utility is demonstrated here by fabricating single-electron transistors based on colloidal cadmium selenide nanocrystals.

890 citations

Journal ArticleDOI
08 Oct 2012-Small
TL;DR: This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility and functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times.
Abstract: By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS2 thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS2 channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS2 thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS2 thin-film into the electronic sensor promises its potential application in various electronic devices.

842 citations

Journal ArticleDOI
TL;DR: In this paper, a review of polymeric membrane fabrication techniques for pressure driven membrane processes and membrane distillation is discussed, the fabrication technique, properties of the fabricated membranes and performance in water desalination are related.

790 citations

Journal ArticleDOI
TL;DR: The fabrication of high-performance thin-film transistors and integrated circuits on flexible and transparent substrates using floating-catalyst chemical vapour deposition followed by a simple gas-phase filtration and transfer process has a well-controlled density and a unique morphology.
Abstract: Carbon nanotube thin-film transistors are expected to enable the fabrication of high-performance, flexible and transparent devices using relatively simple techniques. However, as-grown nanotube networks usually contain both metallic and semiconducting nanotubes, which leads to a trade-off between charge-carrier mobility (which increases with greater metallic tube content) and on/off ratio (which decreases). Many approaches to separating metallic nanotubes from semiconducting nanotubes have been investigated, but most lead to contamination and shortening of the nanotubes, thus reducing performance. Here, we report the fabrication of high-performance thin-film transistors and integrated circuits on flexible and transparent substrates using floating-catalyst chemical vapour deposition followed by a simple gas-phase filtration and transfer process. The resulting nanotube network has a well-controlled density and a unique morphology, consisting of long (~10 µm) nanotubes connected by low-resistance Y-shaped junctions. The transistors simultaneously demonstrate a mobility of 35 cm(2) V(-1) s(-1) and an on/off ratio of 6 × 10(6). We also demonstrate flexible integrated circuits, including a 21-stage ring oscillator and master-slave delay flip-flops that are capable of sequential logic. Our fabrication procedure should prove to be scalable, for example, by using high-throughput printing techniques.

695 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported a high-Q resonant inductive coil, linear and rotary electrostatic-drive motors, and in-plane and vertical electrothermal actuators.
Abstract: Reports a method to additively build three-dimensional (3-D) microelectromechanical systems (MEMS) and electrical circuitry by ink-jet printing nanoparticle metal colloids. Fabricating metallic structures from nanoparticles avoids the extreme processing conditions required for standard lithographic fabrication and molten-metal-droplet deposition. Nanoparticles typically measure 1 to 100 nm in diameter and can be sintered at plastic-compatible temperatures as low as 300/spl deg/C to form material nearly indistinguishable from the bulk material. Multiple ink-jet print heads mounted to a computer-controlled 3-axis gantry deposit the 10% by weight metal colloid ink layer-by-layer onto a heated substrate to make two-dimensional (2-D) and 3-D structures. We report a high-Q resonant inductive coil, linear and rotary electrostatic-drive motors, and in-plane and vertical electrothermal actuators. The devices, printed in minutes with a 100 /spl mu/m feature size, were made out of silver and gold material with high conductivity,and feature as many as 400 layers, insulators, 10:1 vertical aspect ratios, and etch-released mechanical structure. These results suggest a route to a desktop or large-area MEMS fabrication system characterized by many layers, low cost, and data-driven fabrication for rapid turn-around time, and represent the first use of ink-jet printing to build active MEMS.

666 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Graphene
144.5K papers, 4.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20235,291
202210,627
2021845
2020805
2019944