scispace - formally typeset
Search or ask a question
Topic

Fabrication

About: Fabrication is a research topic. Over the lifetime, 20475 publications have been published within this topic receiving 235676 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Semiconductor fibers fabricated via HPCVD in silica pores also retain the inherent characteristics of silica fibers, including their robustness and compatibility with existing optical fiber infrastructure, thus presenting considerable advantages over fibers based on multicomponent soft glasses.
Abstract: Semiconductor waveguide fabrication for photonics applications is usually performed in a planar geometry. However, over the past decade a new field of semiconductor-based optical fiber devices has emerged. The drawing of soft chalcogenide semiconductor glasses together with low melting point metals allows for meters-long distributed photoconductive detectors, for example.[1,2] Crystalline unary semiconductors (e.g., Si, Ge) have been chemically deposited at high pressure into silica capillaries,[3,4] allowing the optical and electronic properties of these materials to be exploited for applications such as all-fiber optoelectronics.[5-7] In contrast to planar rib and ridge waveguides with rectilinear cross sections that generally give rise to polarization dependence, the cylindrical fiber waveguides have the advantage of a circular, polarization-independent cross section. Furthermore, the fiber pores, and thus the wires deposited in them, are exceptionally smooth[8] with extremely uniform diameter over their entire length. The high-pressure chemical vapor deposition (HPCVD) technique is simple, low cost, and flexible so that it can be modified to fill a range of capillaries with differing core dimensions, while high production rates can be obtained by parallel fabrication of multiple fibers in a single deposition. It can also be extended to fill the large number of micro- and nanoscale pores in microstructured optical fibers (MOFs), providing additional geometrical design flexibility to enhance the potential application base of the fiber devices.[9] Semiconductor fibers fabricated via HPCVD in silica pores also retain the inherent characteristics of silica fibers, including their robustness and compatibility with existing optical fiber infrastructure, thus presenting considerable advantages over fibers based on multicomponent soft glasses.

109 citations

Journal ArticleDOI
TL;DR: In this article, a class of carbon-nanotube (CNT) composite materials was developed to take advantage of the precise high-aspect-ratio shape of patterned vertically grown nanotube forests.
Abstract: A class of carbon-nanotube (CNT) composite materials was developed to take advantage of the precise high-aspect-ratio shape of patterned vertically grown nanotube forests. These patterned forests were rendered mechanically robust by chemical vapor infiltration and released by etching an underlying sacrificial layer. We fabricated a diverse variety of functional MEMS devices, including cantilevers, bistable mechanisms, and thermomechanical actuators, using this technique. A wide range of chemical-vapor-depositable materials could be used as fillers; here, we specifically explored infiltration by silicon and silicon nitride. The CNT framework technique may enable high-aspect-ratio MEMS fabrication from a variety of materials with desired properties such as high-temperature stability or robustness. The elastic modulus of the silicon-nanotube and silicon nitride-nanotube composites is dominated by the filler material, but they remain electrically conductive, even when the filler (over 99% of the composite's mass) is insulating.

108 citations

Journal ArticleDOI
TL;DR: The feasibility of the Aerosol Deposition method, which can be adapted as a future fabrication process for flexible electronic devices, is demonstrated and a flexible conductive bridge random access memory (CBRAM) is fabricated to confirm the feasibility of this method.
Abstract: In this paper, we demonstrated the feasibility of the Aerosol Deposition (AD) method which can be adapted as a future fabrication process for flexible electronic devices. On the basis of this method’s noticeable advantages such as room-temperature processing, suitability for mass production, wide material selectivity, and direct fabrication on a flexible substrate, we fabricated and evaluated a flexible conductive bridge random access memory (CBRAM) to confirm the feasibility of this method. The CBRAM was fabricated by the AD-method, and a novel film formation mechanism was observed and analyzed. Considering that the analyzed film formation mechanism is notably different with previously reported for film formation mechanisms of the AD method, these results of study will provide strong guidance for the fabrication of flexible electronic device on ductile substrate.

108 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the fabrication, characterisation and possible applications of a new type of optical material, a 2-dimensional photonic crystal made of silica and air, which can be used to form waveguides with new and unusual properties.

108 citations

Journal ArticleDOI
TL;DR: In this article, an optimum fabrication condition for the continuous carbon fiber reinforced PEEK matrix composites based on a micro-braiding fabrication method was investigated in terms of thermal and fracture characterizations.

108 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
93% related
Silicon
196K papers, 3M citations
92% related
Carbon nanotube
109K papers, 3.6M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Graphene
144.5K papers, 4.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20235,291
202210,627
2021845
2020805
2019944