scispace - formally typeset
Topic

Face (geometry)

About: Face (geometry) is a(n) research topic. Over the lifetime, 12600 publication(s) have been published within this topic receiving 227443 citation(s). The topic is also known as: facet & surface.

...read more

Papers
More filters

Proceedings ArticleDOI
07 Jun 2015-
TL;DR: A system that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity, and achieves state-of-the-art face recognition performance using only 128-bytes perface.

...read more

Abstract: Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors.

...read more

8,289 citations


Proceedings ArticleDOI
Matthew Turk1, Alex Pentland1Institutions (1)
03 Jun 1991-
TL;DR: An approach to the detection and identification of human faces is presented, and a working, near-real-time face recognition system which tracks a subject's head and then recognizes the person by comparing characteristics of the face to those of known individuals is described.

...read more

Abstract: An approach to the detection and identification of human faces is presented, and a working, near-real-time face recognition system which tracks a subject's head and then recognizes the person by comparing characteristics of the face to those of known individuals is described. This approach treats face recognition as a two-dimensional recognition problem, taking advantage of the fact that faces are normally upright and thus may be described by a small set of 2-D characteristic views. Face images are projected onto a feature space ('face space') that best encodes the variation among known face images. The face space is defined by the 'eigenfaces', which are the eigenvectors of the set of faces; they do not necessarily correspond to isolated features such as eyes, ears, and noses. The framework provides the ability to learn to recognize new faces in an unsupervised manner. >

...read more

5,419 citations


Journal ArticleDOI
TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.

...read more

Abstract: We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render (or synthesize) images of the face under novel poses and illumination conditions. The pose space is then sampled and, for each pose, the corresponding illumination cone is approximated by a low-dimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated illumination cone. Test results show that the method performs almost without error, except on the most extreme lighting directions.

...read more

4,705 citations


Proceedings ArticleDOI
Volker Blanz1, Thomas Vetter1Institutions (1)
01 Jul 1999-
TL;DR: A new technique for modeling textured 3D faces by transforming the shape and texture of the examples into a vector space representation, which regulates the naturalness of modeled faces avoiding faces with an “unlikely” appearance.

...read more

Abstract: In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can either be generated automatically from one or more photographs, or modeled directly through an intuitive user interface. Users are assisted in two key problems of computer aided face modeling. First, new face images or new 3D face models can be registered automatically by computing dense one-to-one correspondence to an internal face model. Second, the approach regulates the naturalness of modeled faces avoiding faces with an “unlikely” appearance. Starting from an example set of 3D face models, we derive a morphable face model by transforming the shape and texture of the examples into a vector space representation. New faces and expressions can be modeled by forming linear combinations of the prototypes. Shape and texture constraints derived from the statistics of our example faces are used to guide manual modeling or automated matching algorithms. We show 3D face reconstructions from single images and their applications for photo-realistic image manipulations. We also demonstrate face manipulations according to complex parameters such as gender, fullness of a face or its distinctiveness.

...read more

4,167 citations


4


Journal ArticleDOI
TL;DR: A neural network-based upright frontal face detection system that arbitrates between multiple networks to improve performance over a single network, and a straightforward procedure for aligning positive face examples for training.

...read more

Abstract: We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.

...read more

4,049 citations


Network Information
Related Topics (5)
Connected component

3.7K papers, 70.6K citations

83% related
Tessellation

694 papers, 11.8K citations

81% related
Hurwitz surface

6 papers, 28 citations

80% related
Computational geometry

5.1K papers, 220.6K citations

80% related
Oriented projective geometry

32 papers, 850 citations

79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021561
2020806
20191,172
20181,047
2017810

Top Attributes

Show by:

Topic's top 5 most impactful authors

Shiguang Shan

43 papers, 2K citations

Rama Chellappa

42 papers, 2.5K citations

Debotosh Bhattacharjee

40 papers, 314 citations

Kin-Man Lam

27 papers, 760 citations

Stan Z. Li

27 papers, 2.8K citations