scispace - formally typeset
Search or ask a question
Topic

Facial recognition system

About: Facial recognition system is a research topic. Over the lifetime, 38765 publications have been published within this topic receiving 883427 citations. The topic is also known as: face recognition & facial recognition.


Papers
More filters
Journal ArticleDOI
TL;DR: A new technique coined two-dimensional principal component analysis (2DPCA) is developed for image representation that is based on 2D image matrices rather than 1D vectors so the image matrix does not need to be transformed into a vector prior to feature extraction.
Abstract: In this paper, a new technique coined two-dimensional principal component analysis (2DPCA) is developed for image representation. As opposed to PCA, 2DPCA is based on 2D image matrices rather than 1D vectors so the image matrix does not need to be transformed into a vector prior to feature extraction. Instead, an image covariance matrix is constructed directly using the original image matrices, and its eigenvectors are derived for image feature extraction. To test 2DPCA and evaluate its performance, a series of experiments were performed on three face image databases: ORL, AR, and Yale face databases. The recognition rate across all trials was higher using 2DPCA than PCA. The experimental results also indicated that the extraction of image features is computationally more efficient using 2DPCA than PCA.

3,439 citations

Journal ArticleDOI
TL;DR: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence, which implies a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates.
Abstract: A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person's face is the detailed texture of each eye's iris. The visible texture of a person's iris in a real-time video image is encoded into a compact sequence of multi-scale quadrature 2-D Gabor wavelet coefficients, whose most-significant bits comprise a 256-byte "iris code". Statistical decision theory generates identification decisions from Exclusive-OR comparisons of complete iris codes at the rate of 4000 per second, including calculation of decision confidence levels. The distributions observed empirically in such comparisons imply a theoretical "cross-over" error rate of one in 131000 when a decision criterion is adopted that would equalize the false accept and false reject error rates. In the typical recognition case, given the mean observed degree of iris code agreement, the decision confidence levels correspond formally to a conditional false accept probability of one in about 10/sup 31/. >

3,399 citations

Journal ArticleDOI
TL;DR: Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition.
Abstract: We propose an appearance-based face recognition method called the Laplacianface approach. By using locality preserving projections (LPP), the face images are mapped into a face subspace for analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition.

3,314 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition, and improves robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources.
Abstract: Making recognition more reliable under uncontrolled lighting conditions is one of the most important challenges for practical face recognition systems. We tackle this by combining the strengths of robust illumination normalization, local texture-based face representations, distance transform based matching, kernel-based feature extraction and multiple feature fusion. Specifically, we make three main contributions: 1) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; 2) we introduce local ternary patterns (LTP), a generalization of the local binary pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions, and we show that replacing comparisons based on local spatial histograms with a distance transform based similarity metric further improves the performance of LBP/LTP based face recognition; and 3) we further improve robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources-Gabor wavelets and LBP-showing that the combination is considerably more accurate than either feature set alone. The resulting method provides state-of-the-art performance on three data sets that are widely used for testing recognition under difficult illumination conditions: Extended Yale-B, CAS-PEAL-R1, and Face Recognition Grand Challenge version 2 experiment 4 (FRGC-204). For example, on the challenging FRGC-204 data set it halves the error rate relative to previously published methods, achieving a face verification rate of 88.1% at 0.1% false accept rate. Further experiments show that our preprocessing method outperforms several existing preprocessors for a range of feature sets, data sets and lighting conditions.

2,981 citations

Journal ArticleDOI
TL;DR: A hybrid neural-network for human face recognition which compares favourably with other methods and analyzes the computational complexity and discusses how new classes could be added to the trained recognizer.
Abstract: We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.

2,954 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
92% related
Feature extraction
111.8K papers, 2.1M citations
91% related
Image segmentation
79.6K papers, 1.8M citations
90% related
Convolutional neural network
74.7K papers, 2M citations
89% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023978
20222,290
20211,993
20202,516
20193,006