scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2000"


Journal ArticleDOI
TL;DR: Performance of time-hopping spread-spectrum multiple-access systems employing impulse signal technology for both analog and digital data modulation formats under ideal multiple- access channel conditions is estimated.
Abstract: Attractive features of time-hopping spread-spectrum multiple-access systems employing impulse signal technology are outlined, and emerging design issues are described. Performance of such communications systems in terms of achievable transmission rate and multiple-access capability are estimated for both analog and digital data modulation formats under ideal multiple-access channel conditions.

2,693 citations


Journal ArticleDOI
TL;DR: It is shown that the fading correlation affects the MEA capacity by modifying the distributions of the gains of these subchannels, which depends on the physical parameters of MEA and the scatterer characteristics.
Abstract: We investigate the effects of fading correlations in multielement antenna (MEA) communication systems. Pioneering studies showed that if the fades connecting pairs of transmit and receive antenna elements are independently, identically distributed, MEAs offer a large increase in capacity compared to single-antenna systems. An MEA system can be described in terms of spatial eigenmodes, which are single-input single-output subchannels. The channel capacity of an MEA is the sum of capacities of these subchannels. We show that the fading correlation affects the MEA capacity by modifying the distributions of the gains of these subchannels. The fading correlation depends on the physical parameters of MEA and the scatterer characteristics. In this paper, to characterize the fading correlation, we employ an abstract model, which is appropriate for modeling narrow-band Rayleigh fading in fixed wireless systems.

2,598 citations


Book
27 Jul 2000
TL;DR: In this paper, a diversity technique for communication over fading channels in the presence of interference is proposed. But the technique is not suitable for all channels and it is not applicable to all channels.
Abstract: FUNDAMENTALS. Fading Channel Characterization and Modeling. Types of Communication. MATHEMATICAL TOOLS. Alternative Representations of Classical Functions. Useful Expressions for Evaluating Average Error Probability Performance. New Representations of Some PDF's and CDF's for Correlative Fading Applications. OPTIMUM RECEPTION AND PERFORMANCE EVALUATION. Optimum Receivers for Fading Channels. Performance of Single Channel Receivers. Performance of Multichannel Receivers. APPLICATION IN PRACTICAL COMMUNICATION SYSTEMS. Optimum Combining: A Diversity Technique for Communication Over Fading Channels in the Presence of Interference. Direct--Sequence Code--Division Multiple Access. FURTHER EXTENSIONS. Coded Communication Over Fading Channels. INDEX.

1,955 citations


Proceedings ArticleDOI
15 May 2000
TL;DR: A multiuser convex optimization problem is derived to find the optimal allocation of subchannels, and a low-complexity adaptive subchannel allocation algorithm is proposed that performs almost as well as the optimal solution.
Abstract: This paper investigates the problem of dynamic multiuser subchannel allocation in the downlink of OFDM systems. The assumptions are that the channel model is quasi-static and that the base station has perfect channel information. In traditional TDMA or FDMA systems, resource allocation for each user is non-adaptively fixed, and the water-filling power spectrum is known to be optimal. Since the subchannel allocations among the users are not optimized, a group of users is likely to suffer from poor channel gains resulting from large path loss and random fading. To resolve this problem, we derive a multiuser convex optimization problem to find the optimal allocation of subchannels, and propose a low-complexity adaptive subchannel allocation algorithm. Simulation results show that the proposed algorithm performs almost as well as the optimal solution. Also, a higher spectral efficiency is achieved for a larger number of users in a cell due to the multiuser diversity.

1,184 citations


Journal ArticleDOI
TL;DR: This work designs some multiple-antenna signal constellations and simulates their effectiveness as measured by bit-error probability with maximum-likelihood decoding and demonstrates that two antennas have a 6-dB diversity gain over one antenna at 15-dB SNR.
Abstract: Motivated by information-theoretic considerations, we propose a signaling scheme, unitary space-time modulation, for multiple-antenna communication links. This modulation is ideally suited for Rayleigh fast-fading environments, since it does not require the receiver to know or learn the propagation coefficients. Unitary space-time modulation uses constellations of T/spl times/M space-time signals (/spl Phi//sub i/, l=1, ..., L), where T represents the coherence interval during which the fading is approximately constant, and M

1,116 citations


Journal ArticleDOI
TL;DR: A framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients is presented, and a class of diagonal signals where only one antenna is active at any time is introduced.
Abstract: We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase-shift keying commonly used in single-antenna unknown-channel systems. We show how our differential framework links the unknown-channel system with a known-channel system, and we develop performance design criteria. As a special ease, we introduce a class of diagonal signals where only one antenna is active at any time, and demonstrate how these signals may be used to achieve full transmitter diversity and low probability of error.

956 citations


Journal ArticleDOI
TL;DR: This paper proposes a systematic method for creating constellations of unitary space-time signals for multiple-antenna communication links and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space.
Abstract: We propose a systematic method for creating constellations of unitary space-time signals for multiple-antenna communication links. Unitary space-time signals, which are orthonormal in time across the antennas, have been shown to be well-tailored to a Rayleigh fading channel where neither the transmitter nor the receiver knows the fading coefficients. The signals can achieve low probability of error by exploiting multiple-antenna diversity. Because the fading coefficients are not known, the criterion for creating and evaluating the constellation is nonstandard and differs markedly from the familiar maximum-Euclidean-distance norm. Our construction begins with the first signal in the constellation-an oblong complex-valued matrix whose columns are orthonormal-and systematically produces the remaining signals by successively rotating this signal in a high-dimensional complex space. This construction easily produces large constellations of high-dimensional signals. We demonstrate its efficacy through examples involving one, two, and three transmitter antennas.

761 citations


Book ChapterDOI
01 Jan 2000
TL;DR: This paper describes the statistical models of fading channels which are frequently used in the analysis and design of communication systems, and focuses on the information theory of fading channel, by emphasizing capacity as the most important performance measure.
Abstract: In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.

671 citations


Journal ArticleDOI
Ye Li1
TL;DR: The pilot-symbol-aided parameter estimation for orthogonal frequency division multiplexing (OFDM) systems is highly robust to Doppler frequency for dispersive fading channels with noise impairment even though it has some performance degradation for systems with lower Dopple frequencies.
Abstract: In this paper, we investigate pilot-symbol-aided parameter estimation for orthogonal frequency division multiplexing (OFDM) systems. We first derive a minimum mean-square error (MMSE) pilot-symbol-aided parameter estimator. Then, we discuss a robust implementation of the pilot-symbol-aided estimator that is insensitive to channel statistics. From the simulation results, the required signal-to-noise ratios (SNRs) for a 10% word error rate (WER) are 6.8 dB and 7.3 dB for the typical urban (TU) channels with 40 Hz and 200 Hz Doppler frequencies, respectively, and they are 8 dB and 8.3 dB for the hilly-terrain (HT) channels with 40 Hz and 200 Hz Doppler frequencies, respectively. Compared with the decision-directed parameter estimator, the pilot-symbol-aided estimator is highly robust to Doppler frequency for dispersive fading channels with noise impairment even though it has some performance degradation for systems with lower Doppler frequencies.

671 citations


Proceedings ArticleDOI
23 Sep 2000
TL;DR: This work investigates the use of space-time coding in OFDM-based broadband systems where both spatial and frequency diversity are available and derives the design criteria for space-frequency codes and provides simulation results studying the influence of delay spread, propagation parameters, and antenna spacing.
Abstract: Space-time coding for fading channels is a communication technique that realizes the diversity benefits of multiple transmit antennas. Previous work in this area has focused on the narrowband flat fading case where spatial diversity only is available. We investigate the use of space-time coding in OFDM-based broadband systems where both spatial and frequency diversity are available. We consider a strategy which basically consists of coding across OFDM tones and is therefore called space-frequency coding. For a spatial broadband channel model taking into account physical propagation parameters and antenna spacing, we derive the design criteria for space-frequency codes and we show that space-time codes designed to achieve full spatial diversity in the narrowband case will in general not achieve full space-frequency diversity. Specifically, we show that the Alamouti (see IEEE J. Sel. Areas Comm., vol.16, p.1451-58, 1998) scheme across tones fails to exploit frequency diversity. For a given set of propagation parameters and given antenna spacing, we establish the maximum achievable diversity order. Finally, we provide simulation results studying the influence of delay spread, propagation parameters, and antenna spacing on the performance of space-frequency codes.

501 citations


Journal ArticleDOI
TL;DR: A novel adaptive long-range fading channel prediction algorithm (LRP) and its utilization with adaptive transmission methods are described and results show that long- range prediction makes adaptive transmission techniques feasible for mobile radio channels.
Abstract: It was previously proposed to adapt several transmission methods, including modulation, power control, channel coding, and antenna diversity to rapidly time variant fading channel conditions. Prediction of the channel coefficients several tens-to-hundreds of symbols ahead is essential to realize these methods in practice. We describe a novel adaptive long-range fading channel prediction algorithm (LRP) and its utilization with adaptive transmission methods. The LRP is validated for standard stationary fading models and tested with measured data and with data produced by our novel realistic physical channel model. Both numerical and simulation results show that long-range prediction makes adaptive transmission techniques feasible for mobile radio channels.

Proceedings ArticleDOI
27 Nov 2000
TL;DR: Simulation results verify that in a slow fading environment the proposed space-frequency OFDM (SF-OFDM) transmitter diversity technique has the same performance as a previously reported space-time OFDM [ST-OF DM] transmitter diversity system but shows better performance in the more difficult fast fading environments.
Abstract: A transmitter diversity technique for wireless communications over frequency selective fading channels is presented. The proposed technique utilizes orthogonal frequency division multiplexing (OFDM) to transform a frequency selective fading channel into multiple flat fading subchannels on which space-frequency processing is applied. Simulation results verify that in a slow fading environment the proposed space-frequency OFDM (SF-OFDM) transmitter diversity technique has the same performance as a previously reported space-time OFDM (ST-OFDM) transmitter diversity system but shows better performance in the more difficult fast fading environments. Other implementation advantages of SF-OFDM over the ST-OFDM transmitter diversity technique are also discussed.

Journal ArticleDOI
TL;DR: It is shown that high diversity can be achieved using relatively simple codes as long as very high spectral efficiency is not required and in some cases, performances approaching the information-theoretic bounds.
Abstract: This work considers the achievable performance for coded systems adapted to a multipath block-fading channel model. This is a particularly useful model for analyzing mobile-radio systems which employ techniques such as slow frequency-hopping under stringent time-delay or bandwidth constraints for slowly time-varying channels. In such systems, coded information is transmitted over a small number of fading channels in order to achieve diversity. Bounds on the achievable performance due to coding are derived using information-theoretic techniques. It is shown that high diversity can be achieved using relatively simple codes as long as very high spectral efficiency is not required. Examples of simple block codes and carefully chosen trellis codes are given which yield, in some cases, performances approaching the information-theoretic bounds.

Journal ArticleDOI
TL;DR: Although space-time block codes provide full diversity at low computational costs, it is shown that they incur a loss in capacity because they convert the matrix channel into a scalar AWGN channel whose capacity is smaller than the true channel capacity.
Abstract: Space-time block codes are a remarkable modulation scheme discovered recently for the multiple antenna wireless channel. They have an elegant mathematical solution for providing full diversity over the coherent, flat-fading channel. In addition, they require extremely simple encoding and decoding. Although these codes provide full diversity at low computational costs, we show that they incur a loss in capacity because they convert the matrix channel into a scalar AWGN channel whose capacity is smaller than the true channel capacity. In this letter the loss in capacity is quantified as a function of channel rank, code rate, and number of receive antennas.

Journal ArticleDOI
TL;DR: New fundamental code constructions for both quasi-static and time-varying channels are developed, perhaps the first general constructions-other than delay diversity schemes-that guarantee full spatial diversity for an arbitrary number of transmit antennas.
Abstract: The design of space-time codes to achieve full spatial diversity over fading channels has largely been addressed by handcrafting example codes using computer search methods and only for small numbers of antennas. The lack of more general designs is in part due to the fact that the diversity advantage of a code is the minimum rank among the complex baseband differences between modulated codewords, which is difficult to relate to traditional code designs over finite fields and rings. We present general binary design criteria for PSK-modulated space-time codes. For linear BPSK/QPSK codes, the rank of (binary projections of) the unmodulated codewords, as binary matrices over the binary field, is a sufficient design criterion: full binary rank guarantees full spatial diversity. This criterion accounts for much of what is currently known about PSK-modulated space-time codes. We develop new fundamental code constructions for both quasi-static and time-varying channels. These are perhaps the first general constructions-other than delay diversity schemes-that guarantee full spatial diversity for an arbitrary number of transmit antennas.

Journal ArticleDOI
TL;DR: The intrinsic structure information of OFDM signals is exploited to derive a carrier offset estimator that offers the accuracy of a super resolution subspace method, ESPRIT.
Abstract: In orthogonal frequency-division multiplex (OFDM) communications, the loss of orthogonality due to the carrier-frequency offset must be compensated before discrete Fourier transform-based demodulation can be performed. This paper proposes a new carrier offset estimation technique for OFDM communications over a frequency-selective fading channel. We exploit the intrinsic structure information of OFDM signals to derive a carrier offset estimator that offers the accuracy of a super resolution subspace method, ESPRIT.

Journal ArticleDOI
TL;DR: The main results involve asymptotic expressions for the signal-to-interference ratio of linear multiuser receivers in the limit of large processing gain, with the number of users divided by the processing gain held constant.
Abstract: A linear multiuser receiver for a particular user in a code-division multiple-access (CDMA) network gains potential benefits from knowledge of the channels of all users in the system. In fast multipath fading environments we cannot assume that the channel estimates are perfect and the inevitable channel estimation errors will limit this potential gain. We study the impact of channel estimation errors on the performance of linear multiuser receivers, as well as the channel estimation problem itself. Of particular interest are the scalability properties of the channel and data estimation algorithms: what happens to the performance as the system bandwidth and the number of users (and hence channels to estimate) grows? Our main results involve asymptotic expressions for the signal-to-interference ratio of linear multiuser receivers in the limit of large processing gain, with the number of users divided by the processing gain held constant. We employ a random model for the spreading sequences and the limiting signal-to-interference ratio expressions are independent of the actual signature sequences, depending only on the system loading and the channel statistics: background noise power, energy profile of resolvable multipaths, and channel coherence time. The effect of channel uncertainty on the performance of multiuser receivers is succinctly captured by the notion of effective interference.

Proceedings ArticleDOI
24 Sep 2000
TL;DR: This paper introduces work that has been done to model the effect of small-scale fading (Rayleigh and Ricean) within the ns network simulator, which allows for the faithful simulation of a complete fading envelope.
Abstract: Packet level network protocol simulators use simple channel models for computational efficiency. A typical method for doing this is to compute a packet error probability assuming a certain fading distribution without taking into account time-correlation. This paper introduces work that has been done to model the effect of small-scale fading (Rayleigh and Ricean) within the ns network simulator. It allows for the faithful simulation of a complete fading envelope. The fading models have the appropriate statistics and also time correlational properties obtained from the Doppler spectrum. An efficient implementation based on a simple table lookup is described.

Proceedings ArticleDOI
27 Nov 2000
TL;DR: A new model for multiple-input multiple-output (MIMO) outdoor wireless fading channels is presented which is more general and realistic than the usual i.i.d. model and it is shown that even at long ranges high channel rank can easily be obtained under mild scattering conditions.
Abstract: We present a new model for multiple-input multiple-output (MIMO) outdoor wireless fading channels which is more general and realistic than the usual i.i.d. model. We investigate the channel capacity as a function of parameters such as the local scattering radius at the transmitter and the receiver, the distance between the transmit (TX) and receive (RX) arrays, and the antenna beamwidths and spacing. We point out the existence of "pin-hole" channels which exhibit low fading correlation between antennas but still have poor rank properties and hence low capacity. Finally we show that even at long ranges high channel rank can easily be obtained under mild scattering conditions.

Proceedings ArticleDOI
24 Sep 2000
TL;DR: A simple framework for Monte Carlo simulations of a multiple-input-multiple-output radio channel is proposed and it is demonstrated that the Shannon capacity of the channel is highly dependent on the considered environment.
Abstract: A simple framework for Monte Carlo simulations of a multiple-input-multiple-output radio channel is proposed. The derived model includes the partial correlation between the paths in the channel, as well as fast fading and time dispersion. The only input parameters required for the model are the shape of the power delay spectrum and the spatial correlation functions at the transmit and receive end. Thus, the required parameters are available in the open literature for a large variety of environments. It is furthermore demonstrated that the Shannon capacity of the channel is highly dependent on the considered environment.

Proceedings ArticleDOI
05 Jun 2000
TL;DR: A criterion for selecting an optimum set of transmit antennas is developed and it is shown that the judicious use of fewer transmit antennas when the channel matrix is ill-conditioned can increase system capacity.
Abstract: Previous work has shown that the use of multiple antennas in a fading environment results in a linear increase in capacity. This paper examines the capacity of a multiple antenna element array (MEA) in a quasi-static flat fading environment with a rank deficient channel. We assume that the channel is known at the receiver and the existence of a feedback path to the transmitter. For a particular channel realization, we show that the judicious use of fewer transmit antennas when the channel matrix is ill-conditioned can increase system capacity. We develop a criterion for selecting an optimum set of transmit antennas. This selection is optimal in the sense that the capacity of the resulting MEA system is greater than that for any other configuration with the same number of transmit antennas chosen from the original set. The resulting channel is full rank.

Journal ArticleDOI
TL;DR: By using this scheme, the mean square values of the symbol timing estimation error can be decreased by several orders of magnitude compared to the common correlation methods in both the AWGN and multipath fading channels.
Abstract: Orthogonal frequency division multiplexing (OFDM) is an effective modulation technique for high-rate and high-speed transmission over frequency selective fading channels. However, OFDM systems can be extremely sensitive and vulnerable to synchronization errors. In this paper, we present a scheme for performing timing recovery that includes symbol synchronization and sampling clock synchronization in OFDM systems. The scheme is based on pilot subcarriers. In the scheme, we use a path time delay estimation method to improve the accuracy of the correlation-based symbol synchronization methods, and use a delay-locked loop (DLL) to do the sampling clock synchronization. It is shown that by using this scheme, the mean square values of the symbol timing estimation error can be decreased by several orders of magnitude compared to the common correlation methods in both the AWGN and multipath fading channels. In addition, the scheme can track the symbol timing drift caused by the sampling clock frequency offsets.

Journal ArticleDOI
TL;DR: A time-domain based channel estimation for OFDM system with pilot-data multiplexed scheme and simulation results show that proposed method achieves almost the same performance as DFT-based LMMSE method and better BER performance than the other methods while keeping less complexity.
Abstract: A time-domain based channel estimation for OFDM system with pilot-data multiplexed scheme is investigated. As an approximation to linear minimum mean square estimator (LMMSE), a time-domain based channel estimation is proposed where intra-symbol time-averaging and most significant channel taps selection are applied. The relation and differences of the proposed method to DFT-based LMMSE methods are discussed. The performances of the proposed method, DFT-based LMMSE method and the methods of Chini, Wu, El-Tanany and Mahmoud (see IEEE Trans. on Broadcasting, vol.44, no.1, p.2-11, 1998) and of Yeh and Lin (see IEEE Trans. on Broadcasting, vol.45, no.4, p.400-409, 1999) are evaluated in multipath fading channels. The simulation results show that proposed method achieves almost the same performance as DFT-based LMMSE method and better BER performance than the other methods while keeping less complexity.

Journal ArticleDOI
TL;DR: The analysis accounts for fading of the signal of interest (SOI) as well as the cochannel interference (CCI) in BPSK signalling in flat, quasi-static channels and a limited analysis of the equal gain combiner is presented.
Abstract: The performance of maximal ratio combining for space diversity reception in digital cellular mobile radio systems is studied for communications in the presence of multiple cochannel interference (CCI) sources and is compared to optimum combining. The main contribution of the paper is that the analysis accounts for fading of the signal of interest (SOI) as well as the cochannel interference (CCI). The paper considers BPSK signalling in flat, quasi-static channels. Rayleigh or Rice fading is assumed for the SOI, while CCI is assumed subject to Rayleigh fading. Channels associated with interference sources are assumed independent and identically distributed. Using a multivariate statistical analysis approach and assuming equal-power interference sources, analytical expressions are derived for the density function of the array output signal-to-interference ratio (SIR), the outage probability, and the average probability of bit error with maximal ratio combining. Earlier results obtained for optimum combining and Rayleigh fading are extended to the case when the SOI is subject to Rice fading. A limited analysis of the equal gain combiner is also presented.

Journal ArticleDOI
TL;DR: A general adaptive coding scheme for Nakagami multipath fading channels using a set of 2L-dimensional (2L-D) trellis codes originally designed for additive white Gaussian noise channels is introduced.
Abstract: We introduce a general adaptive coding scheme for Nakagami multipath fading channels. An instance of the coding scheme utilizes a set of 2L-dimensional (2L-D) trellis codes originally designed for additive white Gaussian noise (AWGN) channels. Any set of 2L-D trellis codes for AWGN channels can be used, Sets for which all codes can be generated by the same encoder and decoded by the same decoder are of particular interest. A feedback channel between the transmitter and receiver makes it possible to transmit at high spectral efficiencies under favorable channel conditions and respond to channel degradation through a smooth reduction of the spectral efficiency. We develop a general technique to determine the average spectral efficiency of the coding scheme for any set of 2L-D trellis codes. As an illustrative example, we calculate the average spectral efficiency of an adaptive codec utilizing eight 4-D trellis codes. The example codec is based on the International Telecommunications Union's ITU-T V.34 modem standard.

Proceedings ArticleDOI
17 Mar 2000
TL;DR: Simulations verify that the two-branch transmitter diversity system achieves a diversity gain equivalent to that of the optimal maximal ratio combining (MRC) receiver diversity system.
Abstract: A simple space-time coded orthogonal frequency division multiplexing (OFDM) transmitter diversity technique for wireless communications over frequency selective fading channels is presented. The proposed technique utilizes OFDM to transform frequency selective fading channels into multiple flat fading subchannels on which space-time coding is applied. A two-branch transmitter diversity system is implemented without bandwidth expansion and with a small increase in complexity beyond that of a conventional OFDM system. Simulations verify that the two-branch transmitter diversity system achieves a diversity gain equivalent to that of the optimal maximal ratio combining (MRC) receiver diversity system.

Proceedings ArticleDOI
01 Jan 2000
TL;DR: Compared with the conventional space-time trellis codes, the proposed STC's significantly improve the performance by efficiently exploiting both the spatial diversity and the frequency-selective-fading diversity.
Abstract: We consider a space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) system in frequency-selective fading channels. By analyzing the pairwise error probability (PEP), we show that STC-OFDM systems can potentially provide a diversity order as the product of the number of transmitter antennas, the number of receiver antennas and the frequency selectivity order, and that the large effective length and the ideal interleaving are two most important principles in designing STCs for OFDM systems. Following these principles, we propose a new class of trellis-structured STCs. Compared with the conventional space-time trellis codes, our proposed STC's significantly improve the performance by efficiently exploiting both the spatial diversity and the frequency-selective-fading diversity.

Journal ArticleDOI
TL;DR: A powerful frequency-domain approach is developed in which the average error-rate integral is transformed into the frequency domain, using Parseval's theorem, and integral expressions for the average symbol-error rate of an arbitrary two-dimensional signaling scheme are derived.
Abstract: Performance analysis of equal-gain combining (EGC) diversity systems is notoriously difficult only more so given that the closed-form probability density function (PDF) of the EGC output is only available for dual-diversity combining in Rayleigh fading. A powerful frequency-domain approach is therefore developed in which the average error-rate integral is transformed into the frequency domain, using Parseval's theorem. Such a transformation eliminates the need for computing (or approximating) the EGC output PDF (which is unknown), but instead requires the knowledge of the corresponding characteristic function (which is readily available). The frequency-domain method also circumvents the need to perform multiple-fold convolution integral operations, usually encountered in the calculation of the PDF of the sum of the received signal amplitudes. We then derive integral expressions for the average symbol-error rate of an arbitrary two-dimensional signaling scheme, with EGC reception in Rayleigh, Rician, Nakagami-m (1960), and Nakagami-q fading channels. For practically important cases of second- and third-order diversity systems in Nakagami fading, both coherent and noncoherent detection methods for binary signaling are analyzed using the Appell hypergeometric function. A number of closed-form solutions are derived in which the results put forward by Zhang (see ibid., vol.45, p.270-73, 1997) are shown to be special cases.

Journal ArticleDOI
TL;DR: An analytical framework to quantify the effects of the spreading bandwidth (BW) on spread spectrum systems operating in dense multipath environments in terms of the receiver performance, the receiver complexity, and the multipath channel parameters is developed.
Abstract: We develop an analytical framework to quantify the effects of the spreading bandwidth (BW) on spread spectrum systems operating in dense multipath environments in terms of the receiver performance, the receiver complexity, and the multipath channel parameters. The focus of the paper is to characterize the symbol error probability (SEP) performance of a RAKE receiver tracking the L strongest multipath components in wide-sense stationary uncorrelated scattering (WSSUS) Gaussian channels with frequency-selective fading. Analytical SEP expressions of the RAKE receiver are derived in terms of the number of combined paths, the spreading BW and the multipath spread of the channel. The proposed problem is made analytically tractable by transforming the physical RAKE paths, which are correlated and ordered, into the domain of a "virtual RAKE" receiver with independent virtual paths. This results in a simple derivation of the SEP for a given spreading BW and an arbitrary number of combined paths.

Journal ArticleDOI
TL;DR: A moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions.
Abstract: Outage probability is an important performance measure of communication systems operating over fading channels. Relying on a simple and accurate algorithm for the numerical inversion of the Laplace transforms of cumulative distribution functions, we develop a moment generating function-based numerical technique for the outage probability evaluation of maximal-ratio combining (MRC) and postdetection equal-gain combining (EGC) in generalized fading channels for which the fading in each diversity path need not be independent, identically distributed, nor even distributed according to the same family of distributions. The method is then extended to coherent EGC but only for the case of Nakagami-m fading channels. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the power delay profile and the fading correlation on the outage probability of MRC and EGC systems.