scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2003"


Journal ArticleDOI
TL;DR: A simple characterization of the optimal tradeoff curve is given and used to evaluate the performance of existing multiple antenna schemes for the richly scattered Rayleigh-fading channel.
Abstract: Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. We propose the point of view that both types of gains can be simultaneously obtained for a given multiple-antenna channel, but there is a fundamental tradeoff between how much of each any coding scheme can get. For the richly scattered Rayleigh-fading channel, we give a simple characterization of the optimal tradeoff curve and use it to evaluate the performance of existing multiple antenna schemes.

4,422 citations


Journal ArticleDOI
TL;DR: This work develops and analyzes space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network and demonstrates that these protocols achieve full spatial diversity in the number of cooperating terminals, not just theNumber of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes.
Abstract: We develop and analyze space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a manner that the destination terminal can average the fading, even though it is unknown a priori which terminals will be involved. In particular, a source initiates transmission to its destination, and many relays potentially receive the transmission. Those terminals that can fully decode the transmission utilize a space-time code to cooperatively relay to the destination. We demonstrate that these protocols achieve full spatial diversity in the number of cooperating terminals, not just the number of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes. We discuss issues related to space-time code design for these protocols, emphasizing codes that readily allow for appealing distributed versions.

4,385 citations


Journal ArticleDOI
TL;DR: An overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems is presented and the state of the art in channel modeling and measurements is presented, leading to a better understanding of actual MIMO gains.
Abstract: This paper presents an overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space-time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.

2,488 citations


Journal ArticleDOI
TL;DR: An overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels is provided and it is shown that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the M IMO broadcast channel are intimately related via a duality transformation.
Abstract: We provide an overview of the extensive results on the Shannon capacity of single-user and multiuser multiple-input multiple-output (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For time-varying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for single-user MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends on the available channel information at either the receiver or transmitter, the channel signal-to-noise ratio, and the correlation between the channel gains on each antenna element. We then focus attention on the capacity region of the multiple-access channels (MACs) and the largest known achievable rate region for the broadcast channel. In contrast to single-user MIMO channels, capacity results for these multiuser MIMO channels are quite difficult to obtain, even for constant channels. We summarize results for the MIMO broadcast and MAC for channels that are either constant or fading with perfect instantaneous knowledge of the antenna gains at both transmitter(s) and receiver(s). We show that the capacity region of the MIMO multiple access and the largest known achievable rate region (called the dirty-paper region) for the MIMO broadcast channel are intimately related via a duality transformation. This transformation facilitates finding the transmission strategies that achieve a point on the boundary of the MIMO MAC capacity region in terms of the transmission strategies of the MIMO broadcast dirty-paper region and vice-versa. Finally, we discuss capacity results for multicell MIMO channels with base station cooperation. The base stations then act as a spatially diverse antenna array and transmission strategies that exploit this structure exhibit significant capacity gains. This section also provides a brief discussion of system level issues associated with MIMO cellular. Open problems in this field abound and are discussed throughout the paper.

2,480 citations


Journal ArticleDOI
TL;DR: This work compute a lower bound on the capacity of a channel that is learned by training, and maximize the bound as a function of the received signal-to-noise ratio (SNR), fading coherence time, and number of transmitter antennas.
Abstract: Multiple-antenna wireless communication links promise very high data rates with low error probabilities, especially when the wireless channel response is known at the receiver. In practice, knowledge of the channel is often obtained by sending known training symbols to the receiver. We show how training affects the capacity of a fading channel-too little training and the channel is improperly learned, too much training and there is no time left for data transmission before the channel changes. We compute a lower bound on the capacity of a channel that is learned by training, and maximize the bound as a function of the received signal-to-noise ratio (SNR), fading coherence time, and number of transmitter antennas. When the training and data powers are allowed to vary, we show that the optimal number of training symbols is equal to the number of transmit antennas-this number is also the smallest training interval length that guarantees meaningful estimates of the channel matrix. When the training and data powers are instead required to be equal, the optimal number of symbols may be larger than the number of antennas. We show that training-based schemes can be optimal at high SNR, but suboptimal at low SNR.

2,466 citations


Journal ArticleDOI
TL;DR: This work provides a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called "soft" inputs and outputs and shows that excellent performance at very high data rates can be attained with either.
Abstract: Recent advancements in iterative processing of channel codes and the development of turbo codes have allowed the communications industry to achieve near-capacity on a single-antenna Gaussian or fading channel with low complexity. We show how these iterative techniques can also be used to achieve near-capacity on a multiple-antenna system where the receiver knows the channel. Combining iterative processing with multiple-antenna channels is particularly challenging because the channel capacities can be a factor of ten or more higher than their single-antenna counterparts. Using a "list" version of the sphere decoder, we provide a simple method to iteratively detect and decode any linear space-time mapping combined with any channel code that can be decoded using so-called "soft" inputs and outputs. We exemplify our technique by directly transmitting symbols that are coded with a channel code; we show that iterative processing with even this simple scheme can achieve near-capacity. We consider both simple convolutional and powerful turbo channel codes and show that excellent performance at very high data rates can be attained with either. We compare our simulation results with Shannon capacity limits for ergodic multiple-antenna channel.

2,291 citations


Journal ArticleDOI
TL;DR: This paper proposes and develops a link-layer channel model termed effective capacity (EC), which first model a wireless link by two EC functions, namely, the probability of nonempty buffer, and the QoS exponent of a connection, and proposes a simple and efficient algorithm to estimate these EC functions.
Abstract: To facilitate the efficient support of quality of service (QoS) in next-generation wireless networks, it is essential to model a wireless channel in terms of connection-level QoS metrics such as data rate, delay, and delay-violation probability. However, the existing wireless channel models, i.e., physical-layer channel models, do not explicitly characterize a wireless channel in terms of these QoS metrics. In this paper, we propose and develop a link-layer channel model termed effective capacity (EC). In this approach, we first model a wireless link by two EC functions, namely, the probability of nonempty buffer, and the QoS exponent of a connection. Then, we propose a simple and efficient algorithm to estimate these EC functions. The physical-layer analogs of these two link-layer EC functions are the marginal distribution (e.g., Rayleigh-Ricean distribution) and the Doppler spectrum, respectively. The key advantages of the EC link-layer modeling and estimation are: 1) ease of translation into QoS guarantees, such as delay bounds; 2) simplicity of implementation; and 3) accuracy, and hence, efficiency in admission control and resource reservation. We illustrate the advantage of our approach with a set of simulation experiments, which show that the actual QoS metric is closely approximated by the QoS metric predicted by the EC link-layer model, under a wide range of conditions.

1,469 citations


Journal ArticleDOI
TL;DR: The proposed analysis offers a simple and unifying approach to evaluating the performance of uncoded and (possibly space-time) coded transmissions over fading channels, and the method applies to almost all digital modulation schemes, including M-ary phaseshift keying, quadrature amplitude modulation, and frequency-shift keying with coherent or noncoherent detection.
Abstract: We quantify the performance of wireless transmissions over random fading channels at high signal-to-noise ratio (SNR). The performance criteria we consider are average probability of:error and outage probability. We show that as functions of the average SNR, they can both be characterized by two parameters: the diversity and coding gains. They both exhibit identical diversity orders, but their coding gains in decibels differ by a constant. The diversity and coding gains are found to depend on the behavior of-the random SNR's probability density function only at the origin, or equivalently, on the decaying order of the corresponding moment generating function (i.e., how fast the moment generating function goes to zero as its argument goes to infinity). Diversity and coding gains for diversity combining systems are expressed in terms of the diversity branches' individual diversity and coding gains, where the branches can come from any diversity technique such as space, time, frequency, or, multipath. The proposed analysis offers a simple and unifying approach to evaluating the performance of uncoded and (possibly space-time) coded transmissions over fading channels, and the method applies to almost all digital modulation schemes, including M-ary phaseshift keying, quadrature amplitude modulation, and frequency-shift keying with coherent or noncoherent detection.

1,406 citations


Journal ArticleDOI
TL;DR: A transmit power adaptation method that maximizes the total data rate of multiuser orthogonal frequency division multiplexing (OFDM) systems in a downlink transmission and proposes a simple method where users with the best channel gain for each subcarrier are selected and then the transmit power is equally distributed among the subcarriers.
Abstract: In this paper, we develop a transmit power adaptation method that maximizes the total data rate of multiuser orthogonal frequency division multiplexing (OFDM) systems in a downlink transmission. We generally formulate the data rate maximization problem by allowing that a subcarrier could be shared by multiple users. The transmit power adaptation scheme is derived by solving the maximization problem via two steps: subcarrier assignment for users and power allocation for subcarriers. We have found that the data rate of a multiuser OFDM system is maximized when each subcarrier is assigned to only one user with the best channel gain for that subcarrier and the transmit power is distributed over the subcarriers by the water-filling policy. In order to reduce the computational complexity in calculating water-filling level in the proposed transmit power adaptation method, we also propose a simple method where users with the best channel gain for each subcarrier are selected and then the transmit power is equally distributed among the subcarriers. Results show that the total data rate for the proposed transmit power adaptation methods significantly increases with the number of users owing to the multiuser diversity effects and is greater than that for the conventional frequency-division multiple access (FDMA)-like transmit power adaptation schemes. Furthermore, we have found that the total data rate of the multiuser OFDM system with the proposed transmit power adaptation methods becomes even higher than the capacity of the AWGN channel when the number of users is large enough.

1,393 citations


Proceedings ArticleDOI
09 Jul 2003
TL;DR: In this paper, the performance of the IEEE 802.11b wireless local area networks is analyzed theoretically by deriving simple expressions for the useful throughput, validate them by means of simulation, and compare with several performance measurements.
Abstract: The performance of the IEEE 802.11b wireless local area networks is analyzed. We have observed that when some mobile hosts use a lower bit rate than the others, the performance of all hosts is considerably degraded. Such a situation is a common case in wireless local area networks in which a host far away from an access point is subject to important signal fading and interference. To cope with this problem, the host changes its modulation type, which degrades its bit rate to some lower value. Typically, 802.11b products degrade the bit rate from 11 Mb/s to 5.5, 2, or 1 Mb/s when repeated unsuccessful frame transmissions are detected. In such a case, a host transmitting for example at 1 Mb/s reduces the throughput of all other hosts transmitting at 11 Mb/s to a low value below 1 Mb/s. The basic CSMA/CA channel access method is at the root of this anomaly: it guarantees an equal long term channel access probability to all hosts. When one host captures the channel for a long time because its bit rate is low, it penalizes other hosts that use the higher rate. We analyze the anomaly theoretically by deriving simple expressions for the useful throughput, validate them by means of simulation, and compare with several performance measurements.

1,273 citations


Journal ArticleDOI
29 Apr 2003
TL;DR: This paper provides analyses of three types of diversity combining systems in practical use: selection diversity, maximal-ratio diversity, and equal-gain diversity systems, finding that the simplest possible combiner will generally yield performance essentially equivalent to the maximum obtainable from any quasilinear system.
Abstract: This paper provides analyses of three types of diversity combining systems in practical use. These are: selection diversity, maximal-ratio diversity, and equal-gain diversity systems. Quantitative measures of the relative performance (under realistic conditions) of the three systems are provided. The effects of various departures from ideal conditions, such as non-Rayleigh fading and partially coherent signal or noise voltages, are considered. Some discussion is also included of the relative merits of predetection and postdetection combining and of the problems in determining and using long-term distributions. The principal results are given in graphs and tables, useful in system design. It is seen that the simplest possible combiner, the equal-gain system, will generally yield performance essentially equivalent to the maximum obtainable from any quasilinear system. The principal application of the results is to diversity communication systems and the discussion is set in that context, but many of the results are also applicable to certain radar and navigation systems.

Journal ArticleDOI
TL;DR: An impulse-response characterization for the propagation path is presented, including models for small-scale fading, and it is shown that when two-way communication ports can be defined for a mobile system, it is possible to use reciprocity to focus the energy along the direction of an intended user without any explicit knowledge of the electromagnetic environment in which the system is operating.
Abstract: In order to estimate the signal parameters accurately for mobile systems, it is necessary to estimate a system's propagation characteristics through a medium. Propagation analysis provides a good initial estimate of the signal characteristics. The ability to accurately predict radio-propagation behavior for wireless personal communication systems, such as cellular mobile radio, is becoming crucial to system design. Since site measurements are costly, propagation models have been developed as a suitable, low-cost, and convenient alternative. Channel modeling is required to predict path, loss and to characterize the impulse response of the propagating channel. The path loss is associated with the design of base stations, as this tells us how much a transmitter needs to radiate to service a given region. Channel characterization, on the other hand, deals with the fidelity of the received signals, and has to do with the nature of the waveform received at a receiver. The objective here is to design a suitable receiver that will receive the transmitted signal, distorted due to the multipath and dispersion effects of the channel, and that will decode the transmitted signal. An understanding of the various propagation models can actually address both problems. This paper begins with a review of the information available on the various propagation models for both indoor and outdoor environments. The existing models can be classified into two major classes: statistical models and site-specific models. The main characteristics of the radio channel - such as path loss, fading, and time-delay spread - are discussed. Currently, a third alternative, which includes many new numerical methods, is being introduced to propagation prediction. The advantages and disadvantages of some of these methods are summarized. In addition, an impulse-response characterization for the propagation path is also presented, including models for small-scale fading, Finally, it is shown that when two-way communication ports can be defined for a mobile system, it is possible to use reciprocity to focus the energy along the direction of an intended user without any explicit knowledge of the electromagnetic environment in which the system is operating, or knowledge of the spatial locations of the transmitter and the receiver.

Journal ArticleDOI
TL;DR: The important differences between UWB channels and narrowband wireless channels are pointed out, especially with respect to fading statistics and time of arrival of multipath components.
Abstract: This article describes the modeling of ultrawideband wireless propagation channels, especially for the simulation of personal area networks. The IEEE 802.15.3a standards task group has established a standard channel model to be used for the evaluation of PAN physical layer proposals. We discuss the standard model, the measurements that form its basis, and the possibilities for future improvements. This article points out the important differences between UWB channels and narrowband wireless channels, especially with respect to fading statistics and time of arrival of multipath components. The impacts on the different propagation conditions on system design, like RAKE receiver performance, are elaborated.

Journal ArticleDOI
TL;DR: New exponential bounds for the Gaussian Q function and its inverse are presented and a quite accurate and simple approximate expression given by the sum of two exponential functions is reported for the general problem of evaluating the average error probability in fading channels.
Abstract: We present new exponential bounds for the Gaussian Q function (one- and two-dimensional) and its inverse, and for M-ary phase-shift-keying (MPSK), M-ary differential phase-shift-keying (MDPSK) error probabilities over additive white Gaussian noise channels. More precisely, the new bounds are in the form of the sum of exponential functions that, in the limit, approach the exact value. Then, a quite accurate and simple approximate expression given by the sum of two exponential functions is reported. The results are applied to the general problem of evaluating the average error probability in fading channels. Some examples of applications are also presented for the computation of the pairwise error probability of space-time codes and the average error probability of MPSK and MDPSK in fading channels.

MonographDOI
01 Apr 2003
TL;DR: This volume deals with the modelling, analysis, and simulation of mobile fading channels and provides a fundamental understanding of many issues that are currently being investigated in the area of mobile fade channel modelling.
Abstract: From the Publisher: All relevant components of a mobile radio system, from digital modulation techniques over channel coding through to network aspects, are determined by the propagation characteristics of the channel. Therefore, a precise knowledge of mobile radio channels is crucial for the development, evaluation and test of current and future mobile radio communication systems. This volume deals with the modelling, analysis, and simulation of mobile fading channels and provides a fundamental understanding of many issues that are currently being investigated in the area of mobile fading channel modelling. The author strongly emphasises the detailed derivation of the presented channel models and conveys a high degree of mathematical unity to the reader. Introduces the fundamentals of stochastic and deterministic channel models Features the modelling and simulation of frequency-nonselective fading channels (Rayleigh channels, Rice channels, generalized Rice channels, Nakagami channels, various types of Suzuki channels, classical and modified Loo model) Presents the modelling and simulation of frequency-selective fading channels (WSSUS models, DGUS models, channel models according to COST 207) Discusses the methods used for the design and realization of efficient channel simulators Examines the design, realization, and analysis of fast channel simulators Includes MATLAB programs for the evaluation and simulation of mobile fading channels MATLAB is a registered trademark of The MathWorks, Inc. Telecommunication engineers, computer scientists, and physicists will all find this text both informative and instructive. It is also be an indispensable reference for postgraduate and senior undergraduate students of telecommunication and electrical engineering.

Journal ArticleDOI
TL;DR: It is shown that the optimal pilot sequences derived in this paper outperform both the orthogonal and random pilot sequences and that a considerable gain in signal-to-noise ratio (SNR) can be obtained by using the RLS algorithm, especially in slowly time-varying channels.
Abstract: This paper describes a least squares (LS) channel estimation scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems based on pilot tones. We first compute the mean square error (MSE) of the LS channel estimate. We then derive optimal pilot sequences and optimal placement of the pilot tones with respect to this MSE. It is shown that the optimal pilot sequences are equipowered, equispaced, and phase shift orthogonal. To reduce the training overhead, an LS channel estimation scheme over multiple OFDM symbols is also discussed. Moreover, to enhance channel estimation, a recursive LS (RLS) algorithm is proposed, for which we derive the optimal forgetting or tracking factor. This factor is found to be a function of both the noise variance and the channel Doppler spread. Through simulations, it is shown that the optimal pilot sequences derived in this paper outperform both the orthogonal and random pilot sequences. It is also shown that a considerable gain in signal-to-noise ratio (SNR) can be obtained by using the RLS algorithm, especially in slowly time-varying channels.

Book
01 Jan 2003
TL;DR: Space-time block coding for wireless communications as mentioned in this paper is a technique that promises greatly improved performance in wireless networks by using multiple antennas at the transmitter and receiver, which can be classified into two categories: flat and frequency-selective fading.
Abstract: Space-time coding is a technique that promises greatly improved performance in wireless networks by using multiple antennas at the transmitter and receiver. Space-Time Block Coding for Wireless Communications is an introduction to the theory of this technology. The authors develop the topic using a unified framework and cover a variety of topics ranging from information theory to performance analysis and state-of-the-art space-time coding methods for both flat and frequency-selective fading multiple-antenna channels. The authors concentrate on key principles rather than specific practical applications, and present the material in a concise and accessible manner. Their treatment reviews the fundamental aspects of multiple-input, multiple output communication theory, and guides the reader through a number of topics at the forefront of current research and development. The book includes homework exercises and is aimed at graduate students and researchers working on wireless communications, as well as practitioners in the wireless industry.

Journal Article
TL;DR: This work presents a brief review of particle filtering theory and shows how it can be used for resolving many problems in wireless communications, and demonstrates its application to blind equalization, blind detection over flat fading channels, multiuser detection, and estimation and detection of space-time codes in fading channels.
Abstract: Recent developments have demonstrated that particle filtering is an emerging and powerful methodology, using Monte Carlo methods, for sequential signal processing with a wide range of applications in science and engineering. It has captured the attention of many researchers in various communities, including those of signal processing, statistics and econometrics. Based on the concept of sequential importance sampling and the use of Bayesian theory, particle filtering is particularly useful in dealing with difficult nonlinear and non-Gaussian problems. The underlying principle of the methodology is the approximation of relevant distributions with random measures composed of particles (samples from the space of the unknowns) and their associated weights. First, we present a brief review of particle filtering theory; and then we show how it can be used for resolving many problems in wireless communications. We demonstrate its application to blind equalization, blind detection over flat fading channels, multiuser detection, and estimation and detection of space-time codes in fading channels.

Proceedings ArticleDOI
11 May 2003
TL;DR: It is shown that there is not much improvement in the probabilities of detection when either the probability of false alarm (P/sub f/) exceeds 0/1 or the average signal-to-noise ratio (SNR) exceeds 20 dB.
Abstract: This paper presents another look at the problem of energy detection of unknown signals over different fading channels. We start with the no diversity case and present some alternative closed-form expressions for the probability of detection (P/sub d/) to those recently reported in [V.I. Kostylev, May 2002]. We then investigate the system performance when different diversity schemes are employed. It is shown that there is not much improvement in the probability of detection when either the probability of false alarm (P/sub f/) exceeds 0/1 or the average signal-to-noise ratio (SNR) exceeds 20 dB. In addition, receiver operating characteristic (ROC) curves comparing the performance of equal-gain combining (EGC), selection combining (SC), and switch and stay combining (SSC) are presented. As an example, EGC introduces a gain of two orders of magnitude from the probability of miss perspective compared to the no diversity case while both SC and SSC introduce a gain of about one order of magnitude.

Journal ArticleDOI
TL;DR: Taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels is presented and a tight upper bound for spatially correlated/double scattering MIMo channels is derived.
Abstract: The capacity of multiple-input multiple-output (MIMO) wireless channels is limited by both the spatial fading correlation and rank deficiency of the channel. While spatial fading correlation reduces the diversity gains, rank deficiency due to double scattering or keyhole effects decreases the spatial multiplexing gains of multiple-antenna channels. In this paper, taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, we analyze the ergodic (or mean) MIMO capacity for an arbitrary finite number of transmit and receive antennas. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is allocated to each of the transmit antennas. Using some statistical properties of complex random matrices such as Gaussian matrices, Wishart (1928) matrices, and quadratic forms in the Gaussian matrix, we present a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels and a tight upper bound for spatially correlated/double scattering MIMO channels. We also derive a closed-form capacity formula for keyhole MIMO channels. This analytic formula explicitly shows that the use of multiple antennas in keyhole channels only offers the diversity advantage, but provides no spatial multiplexing gains. Numerical results demonstrate the accuracy of our analytical expressions and the tightness of upper bounds.

Journal ArticleDOI
TL;DR: In this paper, it was shown that the g value derived from delayed L i / T i measurements is strongly dependent on the timing of the preheat treatment, which can be used to correct the measured optical ages.

Proceedings ArticleDOI
06 Apr 2003
TL;DR: Numerical results show that dual-hop wireless communication systems equipped with non-regenerative fixed gain relays have a comparable performance to non-Regenerative systems with variable gain relay and that relay saturation of these systems results in a minimal loss in performance.
Abstract: The paper presents a study on the end-to-end performance of dual-hop wireless communication systems equipped with non-regenerative fixed gain relays and operating over flat Rayleigh fading channels. More specifically, it first derives generic closed-form expressions for the outage probability and the average probability of error when the relays have arbitrary fixed gains. It then proposes a specific fixed gain relay that benefits from the knowledge of the first hop's average fading power and compares its performance with previously proposed relay gains that, in contrast, require knowledge of the instantaneous channel state information of the first hop. Finally, the paper investigates the effect of the relay saturation on the performance of the systems under consideration. Numerical results show that non-regenerative systems with fixed gain relays have a comparable performance to non-regenerative systems with variable gain relays. These results also show that relay saturation of these systems results in a minimal loss in performance.

Journal ArticleDOI
TL;DR: In this paper, new sum-of-sinusoids statistical simulation models are proposed for Rayleigh fading channels. And the autocorrelations and cross correlations of the quadrature components, and the auto-correlation of the complex envelope of the new simulators match the desired ones exactly, even if the number of sinusoids is as small as a single-digit integer.
Abstract: In this paper, new sum-of-sinusoids statistical simulation models are proposed for Rayleigh fading channels. These new models employ random path gain, random initial phase, and conditional random Doppler frequency for all individual sinusoids. It is shown that the autocorrelations and cross correlations of the quadrature components, and the autocorrelation of the complex envelope of the new simulators match the desired ones exactly, even if the number of sinusoids is as small as a single-digit integer. Moreover, the probability density functions of the envelope and phase, the level crossing rate, the average fade duration, and the autocorrelation of the squared fading envelope which contains fourth-order statistics of the new simulators, asymptotically approach the correct ones as the number of sinusoids approaches infinity, while good convergence is achieved even when the number of sinusoids is as small as eight. The new simulators can be directly used to generate multiple uncorrelated fading waveforms for frequency selective fading channels, multiple-input multiple-output channels, and diversity combining scenarios. Statistical properties of one of the new simulators are evaluated by numerical results, finding good agreements.

Journal ArticleDOI
TL;DR: An analytical framework is presented for the evaluation of the end-to-end outage probability of multihop wireless communication systems with nonregenerative relays over Nakagami fading channels and shows that regeneration is more crucial at low average SNR and for multihip systems with a large number of hops.
Abstract: We present a general analytical framework for the evaluation of the end-to-end outage probability of multihop wireless communication systems with nonregenerative relays over Nakagami fading channels. It is shown that the presented results can either be exact or tight lower bounds on the performance of these systems depending on the choice of the relay gain. More specifically, we obtain a closed-form expression for the moment generating function of the reciprocal of the end-to-end signal-to-noise ratio (SNR) and we then use this expression to calculate the outage probability via numerical inversion of the Laplace transform. Numerical examples show that regeneration is more crucial at low average SNR and for multihop systems with a large number of hops.

Journal ArticleDOI
TL;DR: It is demonstrated that, for high signal-to-noise ratio (SNR), the capacity of such channels typically grows only double-logarithmically in the SNR, and introduced the fading number as the second-order term in the high-SNR asymptotic expansion of capacity.
Abstract: A technique is proposed for the derivation of upper bounds on channel capacity. It is based on a dual expression for channel capacity where the maximization (of mutual information) over distributions on the channel input alphabet is replaced with a minimization (of average relative entropy) over distributions on the channel output alphabet. We also propose a technique for the analysis of the asymptotic capacity of cost-constrained channels. The technique is based on the observation that under fairly mild conditions capacity achieving input distributions "escape to infinity." The above techniques are applied to multiple-antenna flat-fading channels with memory where the realization of the fading process is unknown at the transmitter and unknown (or only partially known) at the receiver. It is demonstrated that, for high signal-to-noise ratio (SNR), the capacity of such channels typically grows only double-logarithmically in the SNR. To better understand this phenomenon and the rates at which it occurs, we introduce the fading number as the second-order term in the high-SNR asymptotic expansion of capacity, and derive estimates on its value for various systems. It is suggested that at rates that are significantly higher than the fading number, communication becomes extremely power inefficient, thus posing a practical limit on practically achievable rates. Upper and lower bounds on the fading number are also presented. For single-input-single-output (SISO) systems the bounds coincide, thus yielding a complete characterization of the fading number for general stationary and ergodic fading processes. We also demonstrate that for memoryless multiple-input single-output (MISO) channels, the fading number is achievable using beam-forming, and we derive an expression for the optimal beam direction. This direction depends on the fading law and is, in general, not the direction that maximizes the SNR on the induced SISO channel. Using a new closed-form expression for the expectation of the logarithm of a noncentral chi-square distributed random variable we provide some closed-form expressions for the fading number of some systems with Gaussian fading, including SISO systems with circularly symmetric stationary and ergodic Gaussian fading. The fading number of the latter is determined by the fading mean, fading variance, and the mean squared error in predicting the present fading from its past; it is not directly related to the Doppler spread. For the Rayleigh, Ricean, and multiple-antenna Rayleigh-fading channels we also present firm (nonasymptotic) upper and lower bounds on channel capacity. These bounds are asymptotically tight in the sense that their difference from capacity approaches zero at high SNR, and their ratio to capacity approaches one at low SNR.

Journal ArticleDOI
Rick S. Blum1
TL;DR: System capacity is considered for a group of interfering users employing single-user detection and multiple transmit and receive antennas for flat Rayleigh-fading channels with independent fading coefficients for each path and it is shown that the optimum signaling is sometimes different from cases where the users do not interfere with each other.
Abstract: System capacity is considered for a group of interfering users employing single-user detection and multiple transmit and receive antennas for flat Rayleigh-fading channels with independent fading coefficients for each path. The focus is on the case where there is no channel state information at the transmitter, but channel state information is assumed at the receiver. It is shown that the optimum signaling is sometimes different from cases where the users do not interfere with each other. In particular, the optimum signaling will sometimes put all power into a single transmitting antenna, rather than divide power equally between independent streams from the different antennas. If the interference is either sufficiently weak or sufficiently strong, we show that either the optimum interference-free approach, which puts equal power into each antenna, or the approach that puts all power into a single antenna is optimum and we show how to find the regions where each approach is best.

Proceedings ArticleDOI
11 May 2003
TL;DR: A codebook design method for quantized versions of maximum ratio transmission, equal gain transmission, and generalized selection diversity with maximum ratio combining at the receiver is presented and systems using the beamforming codebooks are shown to have a diversity order of the product of the number of transmit and thenumber of receive antennas.
Abstract: Multiple-input multiple-output (MIMO) wireless systems provides capacity much larger than that provided by traditional single-input single-output (SISO) wireless systems. Beamforming is a low complexity technique that increases the receive signal-to-noise ratio (SNR), however, it requires channel knowledge. Since in practice channel knowledge at the transmitter is difficult to realize, we propose a technique where the receiver designs the beamforming vector and sends it to the transmitter by transmitting a label in a finite set, or codebook, of beamforming vectors. A codebook design method for quantized versions of maximum ratio transmission, equal gain transmission, and generalized selection diversity with maximum ratio combining at the receiver is presented. The codebook design criterion exploits the quantization problem's relationship with Grassmannian line packing. Systems using the beamforming codebooks are shown to have a diversity order of the product of the number of transmit and the number of receive antennas. Monte Carlo simulations compare the performance of systems using this new codebook method with the performance of systems using previously proposed quantized and unquantized systems.

Journal ArticleDOI
TL;DR: A novel coding technique is proposed for the quasi-static fading relay channel, which indicates a combined diversity and coding gain, which is significant even for simple constituent codes.
Abstract: A novel coding technique is proposed for the quasi-static fading relay channel. The source broadcasts a recursive code to both relay and destination. The relay decodes, interleaves, and re-encodes the message prior to forwarding. Because the destination receives both codes in parallel, a distributed turbo code is embedded in the relay channel. Results indicate a combined diversity and coding gain, which is significant even for simple constituent codes.

Journal ArticleDOI
TL;DR: Low-complexity minimum mean-square error (MMSE) and decision-feedback equalizer (DFE) receivers for ICI suppression are developed and show that the DFE receiver can collect significant gains of ICI-impaired OFDM with affordable complexity.
Abstract: While rapid variations of the fading channel cause intercarrier interference (ICI) in orthogonal frequency-division multiplexing (OFDM), thereby degrading its performance considerably, they also introduce temporal diversity, which can be exploited to improve performance. We first derive a matched-filter bound (MFB) for OFDM transmissions over doubly selective Rayleigh fading channels, which benchmarks the best possible performance if ICI is completely canceled without noise enhancement. We then derive universal performance bounds which show that the time-varying channel causes most of the symbol energy to be distributed over a few subcarriers, and that the ICI power on a subcarrier mainly comes from several neighboring subcarriers. Based on this fact, we develop low-complexity minimum mean-square error (MMSE) and decision-feedback equalizer (DFE) receivers for ICI suppression. Simulations show that the DFE receiver can collect significant gains of ICI-impaired OFDM with affordable complexity. In the relatively low Doppler frequency region, the bit-error rate of the DFE receiver is close to the MFB.

Journal ArticleDOI
TL;DR: Compared with existing ST block codes adhering to an orthogonal design (ST-OD), ST-LCP offers not only better performance, but also higher mutual information for N/sub t/>2 and the near-optimum sphere-decoding algorithm, as well as reduced-complexity suboptimum alternatives.
Abstract: We present a unified approach to designing space-time (ST) block codes using linear constellation precoding (LCP). Our designs are based either on parameterizations of unitary matrices, or on algebraic number-theoretic constructions. With an arbitrary number of N/sub t/ transmit- and N/sub r/ receive-antennas, ST-LCP achieves rate 1 symbol/s/Hz and enjoys diversity gain as high as N/sub t/N/sub r/ over (possibly correlated) quasi-static and fast fading channels. As figures of merit, we use diversity and coding gains, as well as mutual information of the underlying multiple-input-multiple-output system. We show that over quadrature-amplitude modulation and pulse-amplitude modulation, our LCP achieves the upper bound on the coding gain of all linear precoders for certain values of N/sub t/ and comes close to this upper bound for other values of N/sub t/, in both correlated and independent fading channels. Compared with existing ST block codes adhering to an orthogonal design (ST-OD), ST-LCP offers not only better performance, but also higher mutual information for N/sub t/>2. For decoding ST-LCP, we adopt the near-optimum sphere-decoding algorithm, as well as reduced-complexity suboptimum alternatives. Although ST-OD codes afford simpler decoding, the tradeoff between performance and rate versus complexity favors the ST-LCP codes when N/sub t/, N/sub r/, or the spectral efficiency of the system increase. Simulations corroborate our theoretical findings.