scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the authors consider a point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and they consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

1,130 citations


Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations


Posted Content
TL;DR: In this article, the authors considered the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput.
Abstract: We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) or full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and the full SI is available, we prove the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.

600 citations


Journal ArticleDOI
TL;DR: The results show that at high SNR, the multiple description encoder does not need to fine-tune the optimization parameters of the system due to the correlated nature of the subcarriers, and FEC-based multiple description coding without temporal coding provides a greater advantage for smaller description sizes.
Abstract: Recently, multiple description source coding has emerged as an attractive framework for robust multimedia transmission over packet erasure channels. In this paper, we mathematically analyze the performance of n-channel symmetric FEC-based multiple description coding for a progressive mode of transmission over orthogonal frequency division multiplexing (OFDM) networks in a frequency-selective slowly-varying Rayleigh faded environment. We derive the expressions for the bounds of the throughput and distortion performance of the system in an explicit closed form, whereas the exact performance is given by an expression in the form of a single integration. Based on this analysis, the performance of the system can be numerically evaluated. Our results show that at high SNR, the multiple description encoder does not need to fine-tune the optimization parameters of the system due to the correlated nature of the subcarriers. It is also shown that, despite the bursty nature of the errors in a slow fading environment, FEC-based multiple description coding without temporal coding provides a greater advantage for smaller description sizes.

526 citations


Journal ArticleDOI
TL;DR: Detection performance of an energy detector used for cooperative spectrum sensing in a cognitive radio network is investigated over channels with both multipath fading and shadowing and can be extended to channels with Nakagami-m multipath fades and lognormal shadowing as well.
Abstract: Detection performance of an energy detector used for cooperative spectrum sensing in a cognitive radio network is investigated over channels with both multipath fading and shadowing. The analysis focuses on two fusion strategies: data fusion and decision fusion. Under data fusion, upper bounds for average detection probabilities are derived for four scenarios: 1) single cognitive relay; 2) multiple cognitive relays; 3) multiple cognitive relays with direct link; and 4) multi-hop cognitive relays. Under decision fusion, the exact detection and false alarm probabilities are derived under the generalized "k-out-of-n" fusion rule at the fusion center with consideration of errors in the reporting channel due to fading. The results are extended to a multi-hop network as well. Our analysis is validated by numerical and simulation results. Although this research focuses on Rayleigh multipath fading and lognormal shadowing, the analytical framework can be extended to channels with Nakagami-m multipath fading and lognormal shadowing as well.

512 citations


Journal ArticleDOI
TL;DR: The fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed and a low-complexity but near-optimal resource allocation algorithm is developed for practical application of the EE-SE tradeoff.
Abstract: Conventional design of wireless networks mainly focuses on system capacity and spectral efficiency (SE). As green radio (GR) becomes an inevitable trend, energy-efficient design is becoming more and more important. In this paper, the fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed. We first set up a general EE-SE tradeoff framework, where the overall EE, SE and per-user quality-of-service (QoS) are all considered, and prove that under this framework, EE is strictly quasiconcave in SE. We then discuss some basic properties, such as the impact of channel power gain and circuit power on the EE-SE relation. We also find a tight upper bound and a tight lower bound on the EE-SE curve for general scenarios, which reflect the actual EE-SE relation. We then focus on a special case that priority and fairness are considered and suggest an alternative upper bound, which is proved to be achievable for flat fading channels. We also develop a low-complexity but near-optimal resource allocation algorithm for practical application of the EE-SE tradeoff. Numerical results confirm the theoretical findings and demonstrate the effectiveness of the proposed resource allocation scheme for achieving a flexible and desirable tradeoff between EE and SE.

379 citations


Journal ArticleDOI
TL;DR: A unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.
Abstract: Error performance is one of the main performance measures and the derivation of its closed-form expression has proved to be quite involved for certain communication systems operating over composite fading channels. In this letter, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.

376 citations


Journal ArticleDOI
TL;DR: This correspondence studies cooperative jamming to increase the physical layer security of a wiretap fading channel via distributed relays and shows that the optimization problem can be solved using a combination of convex optimization and a one-dimensional search.
Abstract: This correspondence studies cooperative jamming (CJ) to increase the physical layer security of a wiretap fading channel via distributed relays. We first provide the feasible conditions on the positiveness of the secrecy rate and then show that the optimization problem can be solved using a combination of convex optimization and a one-dimensional search. Distributed implementation to realize the CJ solution and extension to deal with per group relays' power constraints are discussed.

356 citations


Proceedings ArticleDOI
05 Jun 2011
TL;DR: The fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed and a low-complexity but near-optimal resource allocation algorithm is developed for practical application of the EE-SE tradeoff.
Abstract: Conventional design of wireless networks mainly focuses on system capacity and spectral efficiency (SE). As green radio (GR) becomes an inevitable trend, energy-efficient design in wireless networks is becoming more and more important. In this paper, the fundamental tradeoff relation between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed. We obtain a tight upper bound and lower bound on the optimal EE-SE tradeoff relation for general scenarios based on Lagrange dual decomposition, which accurately reflects the optimal EE-SE tradeoff relation. We then focus on a special case that priority and fairness are considered and derive an alternative upper bound, which is even proved to be achievable for flat fading channels. We also develop a low-complexity but near-optimal resource allocation algorithm for practical application of EE-SE tradeoff. Numerical results demonstrate that the optimal EE-SE tradeoff relation is a bell shape curve and can be well approached with our resource allocation algorithm.

329 citations


Journal ArticleDOI
TL;DR: Simulations testify the effectiveness of the proposed cooperative sensing approach in multi-hop CR networks and a decentralized consensus optimization algorithm is derived to attain high sensing performance at a reasonable computational cost and power overhead.
Abstract: In wideband cognitive radio (CR) networks, spectrum sensing is an essential task for enabling dynamic spectrum sharing, but entails several major technical challenges: very high sampling rates required for wideband processing, limited power and computing resources per CR, frequency-selective wireless fading, and interference due to signal leakage from other coexisting CRs. In this paper, a cooperative approach to wideband spectrum sensing is developed to overcome these challenges. To effectively reduce the data acquisition costs, a compressive sampling mechanism is utilized which exploits the signal sparsity induced by network spectrum under-utilization. To collect spatial diversity against wireless fading, multiple CRs collaborate during the sensing task by enforcing consensus among local spectral estimates; accordingly, a decentralized consensus optimization algorithm is derived to attain high sensing performance at a reasonable computational cost and power overhead. To identify spurious spectral estimates due to interfering CRs, the orthogonality between the spectrum of primary users and that of CRs is imposed as constraints for consensus optimization during distributed collaborative sensing. These decentralized techniques are developed for both cases of with and without channel knowledge. Simulations testify the effectiveness of the proposed cooperative sensing approach in multi-hop CR networks.

297 citations


Proceedings ArticleDOI
10 Apr 2011
TL;DR: This work presents a new secret key generation approach that utilizes the uniformly distributed phase information of channel responses to extract shared cryptographic keys under narrowband multipath fading models and is highly scalable and can improve the analytical key bit generation rate by a couple of orders of magnitude.
Abstract: Recently, there has been great interest in physical layer security techniques that exploit the randomness of wireless channels for securely extracting cryptographic keys. Several interesting approaches have been developed and demonstrated for their feasibility. The state-of-the-art, however, still has much room for improving their practicality. This is because i) the key bit generation rate supported by most existing approaches is very low which significantly limits their practical usage given the intermittent connectivity in mobile environments; ii) existing approaches suffer from the scalability and flexibility issues, i.e., they cannot be directly extended to support efficient group key generation and do not suit for static environments. With these observations in mind, we present a new secret key generation approach that utilizes the uniformly distributed phase information of channel responses to extract shared cryptographic keys under narrowband multipath fading models. The proposed approach enjoys a high key bit generation rate due to its efficient introduction of multiple randomized phase information within a single coherence time interval as the keying sources. The proposed approach also provides scalability and flexibility because it relies only on the transmission of periodical extensions of unmodulated sinusoidal beacons, which allows effective accumulation of channel phases across multiple nodes. The proposed scheme is thoroughly evaluated through both analytical and simulation studies. Compared to existing work that focus on pairwise key generation, our approach is highly scalable and can improve the analytical key bit generation rate by a couple of orders of magnitude.

Journal ArticleDOI
TL;DR: A mixture gamma (MG) distribution for the signal-to-noise ratio (SNR) of wireless channels is proposed, which is not only a more accurate model for composite fading, but is also a versatile approximation for any fading SNR.
Abstract: Composite fading (i.e., multipath fading and shadowing together) has increasingly been analyzed by means of the K channel and related models. Nevertheless, these models do have computational and analytical difficulties. Motivated by this context, we propose a mixture gamma (MG) distribution for the signal-to-noise ratio (SNR) of wireless channels. Not only is it a more accurate model for composite fading, but is also a versatile approximation for any fading SNR. As this distribution consists of N (≥ 1) component gamma distributions, we show how its parameters can be determined by using probability density function (PDF) or moment generating function (MGF) matching. We demonstrate the accuracy of the MG model by computing the mean square error (MSE) or the Kullback-Leibler (KL) divergence or by comparing the moments. With this model, performance metrics such as the average channel capacity, the outage probability, the symbol error rate (SER), and the detection capability of an energy detector are readily derived.

Journal ArticleDOI
TL;DR: It is shown by simulations that the derived new power allocation strategies can achieve substantial capacity gains for the secondary user over the conventional methods based on the interference temperature (IT) constraint, with the same resultant primary user outage probability.
Abstract: In this paper, we consider a cognitive radio (CR) network where a secondary (cognitive) user shares the spectrum for transmission with a primary (non-cognitive) user over block-fading (BF) channels. It is assumed that the primary user has a constant-rate, constant-power transmission, while the secondary user is able to adapt transmit power and rate allocation over different fading states based on the channel state information (CSI) of the CR network. We study a new type of constraint imposed over the secondary transmission to protect the primary user by limiting the maximum transmission outage probability of the primary user to be below a desired target. We derive the optimal power allocation strategies for the secondary user to maximize its ergodic/outage capacity, under the average/peak transmit power constraint along with the proposed primary user outage probability constraint. It is shown by simulations that the derived new power allocation strategies can achieve substantial capacity gains for the secondary user over the conventional methods based on the interference temperature (IT) constraint to protect the primary transmission, with the same resultant primary user outage probability.

Journal ArticleDOI
TL;DR: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna.
Abstract: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna. This is in contrast to a large body of prior work in single-user, multiuser, and ad hoc wireless networks that have shown linear scaling is achievable when multiple receive and transmit antennas (i.e., MIMO transmission) are employed, but that throughput increases logarithmically or sublinearly with N_r when only a single transmit antenna (i.e., SIMO transmission) is used. The linear gain is achieved by using the receive degrees of freedom to simultaneously suppress interference and increase the power of the desired signal, and exploiting the subsequent performance benefit to increase the density of simultaneous transmissions instead of the transmission rate. This result is proven in the transmission capacity framework, which presumes single-hop transmissions in the presence of randomly located interferers, but it is also illustrated that the result holds under several relaxations of the model, including imperfect channel knowledge, multihop transmission, and regular networks (i.e., interferers are deterministically located on a grid).

Journal ArticleDOI
TL;DR: A comprehensive performance analysis of the energy detector over fading channels with single antenna reception or with antenna diversity reception is developed and several series truncation error bounds that allow series termination with a finite number of terms for a given figure of accuracy are derived.
Abstract: A comprehensive performance analysis of the energy detector over fading channels with single antenna reception or with antenna diversity reception is developed. For the no-diversity case and for the maximal ratio combining (MRC) diversity case, with either Nakagami-m or Rician fading, expressions for the probability of detection are derived by using the moment generating function (MGF) method and probability density function (PDF) method. The former, which avoids some difficulties of the latter, uses a contour integral representation of the Marcum-Q function. For the equal gain combining (EGC) diversity case, with Nakagami-m fading, expressions for the probability of detection are derived for the cases L =2,3,4 and L >; 4, where L is the number of diversity branches. For the selection combining (SC) diversity, with Nakagami-m fading, expressions for the probability of detection are derived for the cases L =2 and L >; 2. A discussion on the comparison between MGF and PDF methods is presented. We also derive several series truncation error bounds that allow series termination with a finite number of terms for a given figure of accuracy. These results help quantify and understand the achievable improvement in the energy detector's performance with diversity reception. Numerical and simulation results are also provided.

Journal ArticleDOI
TL;DR: The author will extend this work in two aspects: using the properties of Meijer's G-function, it is shown that the average capacity provides also a closed-form solution for adaptation policies other than ORA, namely optimal power and rate adaptation, channel inversion with fixed rate and truncated channel inversions with fixed rates.
Abstract: In recent studies, the average capacity for optimal rate adaptation (ORA) of free-space optical channels in turbulent atmosphere has been derived in closed form, mainly based on the application of Meijer's G-function. To this end, the channel was assumed to be memoryless, stationary and ergodic, with independent and identically distributed fading statistics. It was also assumed that scintillations follow a gamma–gamma distribution so as to appropriately describe moderate-to-strong turbulence conditions. In the current contribution, the author will extend this work in two aspects: (i) using the properties of Meijer's G-function, it is shown that the average capacity provides also a closed-form solution for adaptation policies other than ORA, namely optimal power and rate adaptation, channel inversion with fixed rate and truncated channel inversion with fixed rate; (ii) if the additional loss caused by a misalignment between transmitter and receiver (pointing error) is taken into account, it is demonstrated that the developed analytical framework applies straightforwardly.

Proceedings ArticleDOI
23 Jan 2011
TL;DR: In this article, a constant factor approximation algorithm was proposed for the SINR capacity maximization problem in the physical interference model with fading metrics, which achieves an O(log n) approximation for single-hop and multi-hop scheduling scenarios.
Abstract: In modern wireless networks devices are able to set the power for each transmission carried out. Experimental but also theoretical results indicate that such power control can improve the network capacity significantly. We study this problem in the physical interference model using SINR constraints.In the SINR capacity maximization problem, we are given n pairs of senders and receivers, located in a metric space (usually a so-called fading metric). The algorithm shall select a subset of these pairs and choose a power level for each of them with the objective of maximizing the number of simultaneous communications. This is, the selected pairs have to satisfy the SINR constraints with respect to the chosen powers.We present the first algorithm achieving a constant-factor approximation in fading metrics. The best previous results depend on further network parameters such as the ratio of the maximum and the minimum distance between a sender and its receiver. Expressed only in terms of n, they are (trivial) Ω(n) approximations.Our algorithm still achieves an O(log n) approximation if we only assume to have a general metric space rather than a fading metric. Furthermore, existing approaches work well together with the algorithm allowing it to be used in singlehop and multi-hop scheduling scenarios. Here, we also get polylog n approximations.

Book
06 Dec 2011
TL;DR: This paper presents a meta-modelling technique called “Modeling of Fading and Shadowing” which automates the very labor-intensive and therefore time-heavy and expensive process of manually modeling the physical properties of radio waves.
Abstract: Overview.- Concepts of Probability and Statistics.- Modems for Wireless Communications.- Modeling of Fading and Shadowing.- Diversity Techniques.- Interference in Wireless Channels.

Journal ArticleDOI
TL;DR: In this article, the authors considered a MIMO fading broadcast channel where the fading channel coefficients are constant over time-frequency blocks that span a coherent time x a coherence bandwidth.
Abstract: We consider a MIMO fading broadcast channel where the fading channel coefficients are constant over time-frequency blocks that span a coherent time x a coherence bandwidth. In closed-loop systems, channel state information at transmitter (CSIT) is acquired by the downlink training sent by the base station and an explicit feedback from each user terminal. In open-loop systems, CSIT is obtained by exploiting uplink training and channel reciprocity. We use closed-form lower bounds and tight approximations of the ergodic achievable rate in the presence of CSIT errors in order to optimize the overall system throughput, by taking explicitly into account the overhead due to channel estimation and channel state feedback. Based on three time-frequency block models inspired by actual systems, we provide useful guidelines for the overall system optimization. In particular, digital (quantized) feedback is found to offer a substantial advantage over analog (unquantized) feedback.

Journal ArticleDOI
TL;DR: This paper studies the outage probability performance of decode-and-forward (DF) cognitive dual-hop systems for Nakagami-m fading channels, with consideration of an interference temperature limit, showing that the interference temperature constraint causes the outage saturation phenomenon, but the outage performance gets better when the channel quality of the secondary transmission links improves.
Abstract: This paper studies the outage probability performance of decode-and-forward (DF) cognitive dual-hop systems for Nakagami-m fading channels, with consideration of an interference temperature limit. An exact outage probability expression is derived, and the impact of various key system parameters, such as interference temperature and fading severity, is investigated. Our results show that the interference temperature constraint causes the outage saturation phenomenon, but the outage performance gets better when the channel quality of the secondary transmission links improves. However, how the channel quality of the interfering links affects the outage performance depends on the channel quality of the secondary transmission links, as well as the interference temperature constraint and maximum transmit power.

Journal ArticleDOI
TL;DR: This work analyzes the transmission of confidential messages over wireless networks, in which the legitimate communication partners are aided by friendly jammers, and shows that a single jammer is not sufficient to maximize both figures of merit simultaneously.
Abstract: Inspired by recent results on information-theoretic security, we consider the transmission of confidential messages over wireless networks, in which the legitimate communication partners are aided by friendly jammers. We characterize the security level of a confined region in a quasi-static fading environment by computing the probability of secrecy outage in connection with two new measures of physical-layer security: the jamming coverage and the jamming efficiency. Our analysis for various jamming strategies based on different levels of channel state information provides insight into the design of optimal jamming configurations and shows that a single jammer is not sufficient to maximize both figures of merit simultaneously. Moreover, a single jammer requires full channel state information to provide security gains in the vicinity of the legitimate receiver.

Journal ArticleDOI
19 May 2011
TL;DR: The objective is to firmly establish the link between radio channel characteristics and the performance of critical V2V safety applications, and provide the first instance of channel measurements performed simultaneously to application performance evaluation.
Abstract: The mobile outdoor radio environment is challenging for vehicular communications. Although multipath propagation offers diversity and benefits in non-line-of-sight (NLOS) conditions, simultaneous multipath and mobility results in a doubly-selective fading channel. In practice, this means that the channel parameters vary significantly in both time and frequency within the bandwidth and typical packet durations used in 802.11p/WAVE standards for short-range vehicular communications. This paper presents the results of extensive field trial campaigns conducted in several countries, totaling over 1100 km. These field trials are scenario based, focusing on challenging low-latency, high-reliability vehicle-to-vehicle (V2V) safety applications including intersection collision warning, turn across path, emergency electronic brake light, do not pass warning, and precrash sensing. Vehicle-to-infrastructure (V2I) applications are also considered. The field trials compared the performance of off-the-shelf WiFi-based radio equipment with a more advanced 802.11p compliant radio employing more sophisticated channel estimation and tracking. Field trial results demonstrate significantly improved performance using the advanced radio, translating into greatly increased driver warning times and stopping distances. In fact the results show that off-the-shelf WiFi equipment fails to provide sufficient stopping distance to avert accidents in some cases. During the field trials, channel sounding data were also captured. Analysis of these channel measurements reveals the critical importance of accurate channel estimation, tracking the channel in both time and frequency within each packet. Delay spread and Doppler spread statistics computed from the channel measurements validate previously reported results in the literature. The results in this paper, however, provide the first instance of channel measurements performed simultaneously to application performance evaluation. The objective is to firmly establish the link between radio channel characteristics and the performance of critical V2V safety applications.

Proceedings ArticleDOI
01 Dec 2011
TL;DR: The paper presents the first results toward modeling the uplink and downlink channel and provides the path loss exponents for an open field and a campus scenario and illustrates the impact of antenna orientation on the received signal strength and UDP throughput performance for different heights, yaws, and distances.
Abstract: We analyze unmanned aerial vehicle (UAV)-to-ground links for an 802.11a-based small quadrotor UAV network with two on-board antennas via a set of field experiments. The paper presents our first results toward modeling the uplink and downlink channel and provide the path loss exponents for an open field and a campus scenario. We illustrate the impact of antenna orientation on the received signal strength and UDP throughput performance for different heights, yaws, and distances. When both antennas are horizontal (parallel to the flight direction plane), yaw differences can be handled, whereas a vertical antenna can assist against signal loss due to tilting of the UAV during acceleration/deceleration. Further work is required to analyze fading as well as UAV-UAV links in a multi-UAV network.

Journal ArticleDOI
Mai Vu1
TL;DR: In closed-form, the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint are established and two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver.
Abstract: We establish in closed-form the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint. Two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver. For the first case, the optimal signaling scheme is beamforming with the phases of the beam weights matched to the phases of the channel coefficients, but the amplitudes independent of the channel coefficients and dependent only on the constrained powers. For the second case, the optimal scheme is to send independent signals from the antennas with the constrained powers. In both cases, the capacity with per-antenna power constraint is usually less than that with sum power constraint.

Journal ArticleDOI
TL;DR: Three low-complexity relay-selection strategies, namely, selective amplify and forward, selective decode and forward (S-DF), and amplified and forward with partial relay selection (PRS-AF) in a spectrum-sharing scenario are studied and the diversity and coding gains are derived and compared.
Abstract: Three low-complexity relay-selection strategies, namely, selective amplify and forward (S-AF), selective decode and forward (S-DF), and amplify and forward with partial relay selection (PRS-AF) in a spectrum-sharing scenario are studied. First, we consider a scenario where perfect channel state information (CSI) is available. For these scenarios, the respective asymptotic outage behaviors of the secondary systems are analyzed, from which the diversity and coding gains are derived and compared. Unlike the coding gain, which is shown to be very sensitive with the position of the primary receiver, the diversity gain of the secondary system is the same as the nonspectrum-sharing system. In addition, depending on the cooperative strategy employed, an increase in the number of relays may lead to severe loss of the coding gain. Afterwards, the impacts of imperfect CSI regarding the interference and transmit channels on the outage behavior of the secondary systems are analyzed. On one hand, the imperfect CSI concerning the interference channels only affects the outage performance of the primary system, whereas it has no effect on the diversity gain of the secondary system. On the other hand, the imperfect CSI concerning the transmit channels of the secondary systems may reduce the diversity gain of the three relay-selection strategies to unity, which is validated by both theoretical and numerical results.

Posted Content
TL;DR: A comparison of the DoF region of the MIMO IC under the delayed CSIT assumption with those under the two extremes of instantaneous CSIT and no CSIT assumptions reveals that there are nonempty classes of MIMo ICs, defined by certain relationships between the numbers of antennas at the four terminals, that correspond to the following four scenarios.
Abstract: The degrees of freedom (DoF) region of the 2-user multiple-antenna or MIMO (multiple-input, multiple-output) interference channel (IC) is studied under fast fading and the assumption of {\em delayed} channel state information (CSI) wherein all terminals know all (or certain) channel matrices perfectly, but with a delay, and each receiver in addition knows its own incoming channels instantaneously. The general MIMO IC is considered with an arbitrary number of antennas at each of the four terminals. Dividing it into several classes depending on the relation between the numbers of antennas at the four terminals, the fundamental DoF regions are characterized under the delayed CSI assumption for {\em all} possible values of number of antennas at the four terminals. In particular, an outer bound on the DoF region of the general MIMO IC is derived. This bound is then shown to be tight for all MIMO ICs by developing interference alignment based achievability schemes for each class. A comparison of these DoF regions under the delayed CSI assumption is made with those of the idealistic `perfect CSI' assumption where perfect and instantaneous CSI is available at all terminals on the one hand and with the DoF regions of the conservative `no CSI' assumption on the other, where CSI is available at the receivers but not at all at the transmitters.

Journal ArticleDOI
TL;DR: This letter considers non-colluding and colluding eavesdroppers, and derive the network secure connectivity for both eavesdropper strategies, and mathematically shows how nodes with multiple transmit antenna elements can improve secure connectivity by forming a directional antenna or using eigen-beamforming.
Abstract: Information-theoretic security constraints reduce the connectivity of wireless networks in the presence of eavesdroppers, which motivates better modeling of such networks and the development of techniques that are robust to eavesdropping. In this letter, we are concerned with the existence of secure connections from a typical transmitter to the legitimate receiver(s) over fading channels, where the legitimate nodes and eavesdroppers are all randomly located. We consider non-colluding and colluding eavesdroppers, and derive the network secure connectivity for both eavesdropper strategies. We mathematically show how nodes with multiple transmit antenna elements can improve secure connectivity by forming a directional antenna or using eigen-beamforming. Compared with single antenna transmission, a large connectivity improvement can be achieved by both multi-antenna transmission techniques even with a small number of antennas.

Proceedings ArticleDOI
26 Jun 2011
TL;DR: This paper analyzes the rate of convergence of SINR (in presence of pilot contamination) as the number of antennas at the BS increases to an infinite limit and the effect of SNR and the fading coefficients of the user channels on this rates of convergence.
Abstract: This paper considers a two-cell cellular system with multiple antennas at the base station (BS) and single antenna user terminals. In such a scenario, the presence of channel state information (CSI) at the BS is essential for efficient system performance. In reciprocal TDD systems, CSI can be obtained via uplink training. Since only finite time-frequency resources are available, such uplink training generally must be performed using non-orthogonal resources (for different users), leading to pilot contamination between users who train simultaneously. In particular, we analyze the rate of convergence of SINR (in presence of pilot contamination) as the number of antennas (M) at the BS increases to an infinite limit. The effect of SNR and the fading coefficients of the user channels on this rate of convergence is also determined.

Journal ArticleDOI
TL;DR: In this article, the probability density function (PDF) of the Γ Γ sum can be efficiently approximated either by the PDF of a single Γ − Γ distribution, or by a finite weighted sum of PDFs of Γ - Γ distributions.
Abstract: The Gamma-Gamma (Γ Γ ) distribution has recently attracted the interest of the research community due to its involvement in various communication systems. In the context of RF wireless communications, Γ Γ distribution accurately models the power statistics in composite shadowing/fading channels as well as in cascade multipath fading channels, while in optical wireless (OW) systems, it describes the fluctuations of the irradiance of optical signals distorted by atmospheric turbulence. Although Γ Γ channel model offers analytical tractability in the analysis of single input single output (SISO) wireless systems, difficulties arise when studying multiple input multiple output (MIMO) systems, where the distribution of the sum of independent Γ Γ variates is required. In this paper, we present a novel and simple closed-form approximation for the distribution of the sum of independent, but not necessarily identically distributed Γ Γ variates. It is shown that the probability density function (PDF) of the Γ Γ sum can be efficiently approximated either by the PDF of a single Γ Γ distribution, or by a finite weighted sum of PDFs of Γ Γ distributions. To reveal the importance of the proposed approximation, the performance of RF wireless systems in the presence of composite fading, as well as MIMO OW systems impaired by atmospheric turbulence, are investigated. Numerical results and simulations illustrate the accuracy of the proposed approach.

01 Jan 2011
TL;DR: In this paper, the results of extensive field trial campaigns conducted in several countries, totaling over 1100 km, were presented, focusing on challenging low-latency, high-reliability vehicle-to-vehicle (V2V) safety applications including intersection collision warn- ing, turn across path, emergency electronic brake light, do not pass warning, and precrash sensing.
Abstract: The mobile outdoor radio environment is challenging for vehicular communications. Although multipath propagation offers diversity and benefits in non-line-of-sight (NLOS) conditions, simultaneous multipath and mobility results in a doubly-selective fading channel. In practice, this means that the channel parameters vary significantly in both time and frequency within the bandwidth and typical packet durations used in 802.11p/WAVE standards for short-range vehicular communications. This paper presents the results of extensive field trial campaigns conducted in several countries, totaling over 1100 km. These field trials are scenario based, focusing on challenging low-latency, high-reliability vehicle-to-vehicle (V2V) safety applications including intersection collision warn- ing, turn across path, emergency electronic brake light, do not pass warning, and precrash sensing. Vehicle-to-infrastructure (V2I) applications are also considered. The field trials compared the performance of off-the-shelf WiFi-based radio equipment with a more advanced 802.11p compliant radio employing more sophisticated channel estimation and tracking. Field trial results demonstrate significantly improved performance using the advanced radio, translating into greatly increased driver warning times and stopping distances. In fact the results show that off-the-shelf WiFi equipment fails to provide sufficient stopping distance to avert accidents in some cases. During the field trials, channel sounding data were also captured. Analysis of these channel measurements reveals the critical importance of accurate channel estimation, tracking the channel in both time and frequency within each packet. Delay spread and Doppler spread statistics computed from the channel measure- ments validate previously reported results in the literature. The results in this paper, however, provide the first instance of channel measurements performed simultaneously to applica- tion performance evaluation. The objective is to firmly establish the link between radio channel characteristics and the performance of critical V2V safety applications.