scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2012"


Journal ArticleDOI
TL;DR: If unlimited energy can be stored in the battery with harvested energy and the full SI is available, it is proved the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.
Abstract: We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) or full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and the full SI is available, we prove the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.

726 citations


Proceedings ArticleDOI
01 Dec 2012
TL;DR: It is shown via computer simulations that the proposed OFDM with index modulation achieves significantly better error performance than classical OFDM due to the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel conditions.
Abstract: In this paper, a novel orthogonal frequency division multiplexing (OFDM) scheme, which is called OFDM with index modulation (OFDM-IM), is proposed for frequency-selective fading channels. In this scheme, inspiring from the recently introduced spatial modulation concept for multiple-input multiple-output (MIMO) channels, the information is conveyed not only by M-ary signal constellations as in classical OFDM, but also by the indices of the subcarriers, which are activated according to the incoming bit stream. Different transceiver structures are proposed and a theoretical error performance analysis is provided for the new scheme. It is shown via computer simulations that the proposed scheme achieves significantly better error performance than classical OFDM due to the information bits carried in the spatial domain by the indices of OFDM subcarriers.

574 citations


Journal ArticleDOI
TL;DR: It is shown that the proposed relay selection scheme significantly outperforms conventional relay selection policies for all cases and ensures a diversity gain equal to two times the number of relays for large buffer sizes.
Abstract: In this paper, we study the relay selection problem for a finite buffer-aided decode-and-forward cooperative wireless network. A relay selection policy that fully exploits the flexibility offered by the buffering ability of the relay nodes in order to maximize the achieved diversity gain is investigated. This new scheme incorporates the instantaneous strength of the wireless links as well as the status of the finite relay buffers and adapts the relay selection decision on the strongest available link by dynamically switching between relay reception and transmission. In order to analyse the new relay selection policy in terms of outage probability and diversity gain, a theoretical framework that models the evolution of the relay buffers as a Markov chain (MC) is introduced. The construction of the state transition matrix and the related steady state of the MC are studied and their impact on the derivation of the outage probability is investigated. We show that the proposed relay selection scheme significantly outperforms conventional relay selection policies for all cases and ensures a diversity gain equal to two times the number of relays for large buffer sizes.

378 citations


Journal ArticleDOI
TL;DR: A comprehensive analytical framework to compute the average bit error probability (ABEP) is introduced, which can be used for any MIMO setup, for arbitrary correlated fading channels, and for generic modulation schemes, and which clearly highlights interesting fundamental trends about the performance of SM.
Abstract: In this paper, we study the performance of spatial modulation (SM) multiple-input-multiple-output (MIMO) wireless systems over generic fading channels. More precisely, a comprehensive analytical framework to compute the average bit error probability (ABEP) is introduced, which can be used for any MIMO setup, for arbitrary correlated fading channels, and for generic modulation schemes. It is shown that, when compared with state-of-the-art literature, our framework 1) has more general applicability over generalized fading channels, 2) is, in general, more accurate as it exploits an improved union-bound method, and, 3) more importantly, clearly highlights interesting fundamental trends about the performance of SM, which are difficult to capture with available frameworks. For example, by focusing on the canonical reference scenario with independent identically distributed Rayleigh fading, we introduce very simple formulas that yield insightful design information on the optimal modulation scheme to be used for the signal constellation diagram, as well as highlight the different roles played by the bit mapping on the signal and spatial constellation diagrams. Numerical results show that, for many MIMO setups, SM with phase-shift-keying (PSK) modulation outperforms SM with quadrature-amplitude modulation (QAM), which is a result never reported in the literature. In addition, by exploiting asymptotic analysis, closed-form formulas of the performance gain of SM over other single-antenna transmission technologies are provided. Numerical results show that SM can outperform many single-antenna systems and that, for any transmission rate, there is an optimal allocation of the information bits onto spatial and signal constellation diagrams. Furthermore, by focusing on the Nakagami-fading scenario with generically correlated fading, we show that fading severity plays a very important role in determining the diversity gain of SM. In particular, the performance gain over single-antenna systems increases for fading channels less severe than Rayleigh fading, whereas it gets smaller for more severe fading channels. In addition, it is shown that the impact of fading correlation at the transmitter is reduced for less severe fading. Finally, analytical frameworks and claims are substantiated through extensive Monte Carlo simulations.

352 citations


Journal ArticleDOI
TL;DR: This work establishes a general condition that must be satisfied by any degrees of freedom tuple (d1. d2....dK) achievable through linear interference alignment that implies that the total achievable DoF cannot grow linearly with K, and is in fact no more than K(M + N)/(K + 1).
Abstract: Consider a K-user flat fading MIMO interference channel where the kth transmitter (or receiver) is equipped with Mk (respectively Nk) antennas. If an exponential (in K) number of generic channel extensions are used either across time or frequency, Cadambe and Jafar [1] showed that the total achievable degrees of freedom (DoF) can be maximized via interference alignment, resulting in a total DoF that grows linearly with A even if Mk and Nk are bounded. In this work we consider the case where no channel extension is allowed, and establish a general condition that must be satisfied by any degrees of freedom tuple (d1. d2....dK) achievable through linear interference alignment. For a symmetric system with Mk = M, Nk = N, dk = d for all k, this condition implies that the total achievable DoF cannot grow linearly with K, and is in fact no more than K(M + N)/(K + 1). We also show that this bound is tight when the number of antennas at each transceiver is divisible by d, the number of data streams per user.

328 citations


Proceedings ArticleDOI
25 Jun 2012
TL;DR: FM radio signal RSSI values can be used to achieve room-level indoor localization with similar or better accuracy to the one achieved by WiFi signals, and the localization accuracy increases as much as 83% when FM and WiFi signals are combined to generate wireless fingerprints.
Abstract: The major challenge for accurate fingerprint-based indoor localization is the design of robust and discriminative wireless signatures. Even though WiFi RSSI signatures are widely available indoors, they vary significantly over time and are susceptible to human presence, multipath, and fading due to the high operating frequency. To overcome these limitations, we propose to use FM broadcast radio signals for robust indoor fingerprinting. Because of the lower frequency, FM signals are less susceptible to human presence, multipath and fading, they exhibit exceptional indoor penetration, and according to our experimental study they vary less over time when compared to WiFi signals. In this work, we demonstrate through a detailed experimental study in 3 different buildings across the US, that FM radio signal RSSI values can be used to achieve room-level indoor localization with similar or better accuracy to the one achieved by WiFi signals. Furthermore, we propose to use additional signal quality indicators at the physical layer (i.e., SNR, multipath etc.) to augment the wireless signature, and show that localization accuracy can be further improved by more than 5%. More importantly, we experimentally demonstrate that the localization errors of FM andWiFi signals are independent. When FM and WiFi signals are combined to generate wireless fingerprints, the localization accuracy increases as much as 83% (when accounting for wireless signal temporal variations) compared to when WiFi RSSI only is used as a signature.

308 citations


Journal ArticleDOI
TL;DR: In this paper, the degree-of-freedom (DoF) regions for the MIMO broadcast channel (BC), interference channels (ICs), including X and multihop ICs, and the cognitive radio channel (CRC), when there is no channel state information at the transmitter(s) (CSIT) and for fading distributions in which transmit directions are statistically indistinguishable.
Abstract: The degree-of-freedom (DoF) regions are characterized for the multiple-input multiple-output (MIMO) broadcast channel (BC), interference channels (ICs), including X and multihop ICs, and the cognitive radio channel (CRC), when there is no channel state information at the transmitter(s) (CSIT) and for fading distributions in which transmit directions are statistically indistinguishable. For the K-user MIMO BC, the exact DoF region is obtained, which shows that time division is DoF-region optimal. For the two-user MIMO IC and CRC, inner and outer bounds are obtained that coincide for a vast majority of the relative numbers of antennas at the four terminals. Finally, the DoF of the K-user MIMO IC, the CRC, and X networks are obtained for certain classes of these networks. The results herein are derived for fading distributions and additive noises that are more general than those considered in other simultaneous related works. The DoF with and without CSIT are compared and conditions under which a lack of CSIT does, or does not, result in the loss of DoF are identified, thereby 1) providing robust no-CSIT schemes that have the same DoF as their previously found CSIT counterparts and 2) identifying situations where CSI feedback to transmitters would provide gains that are significant enough that even the DoF could be improved.

282 citations


Journal ArticleDOI
TL;DR: This paper presents a novel and practical study on the position-based radio propagation channel for High-Speed Railway by performing extensive measurements at 2.35 GHz in China, which significantly promotes the evaluation and verification of wireless communications in relative scenarios.
Abstract: This paper presents a novel and practical study on the position-based radio propagation channel for High-Speed Railway by performing extensive measurements at 2.35 GHz in China. The specification on the path loss model is developed. In particular, small scale fading properties such as K-factor, Doppler frequency feature and time delay spread are parameterized, which show dynamic variances depending on the train location and the transceiver separation. Finally, the statistical position-based channel models are firstly established to characterize the High-Speed Railway channel, which significantly promotes the evaluation and verification of wireless communications in relative scenarios.

266 citations


Journal ArticleDOI
TL;DR: The main contribution of this paper is the insight that the transmitters' knowledge of channel coherence intervals alone (without any knowledge of the values of channel coefficients) can be surprisingly useful in a multiuser setting, illustrated by the idea of blind interference alignment.
Abstract: The main contribution of this paper is the insight that the transmitters' knowledge of channel coherence intervals alone (without any knowledge of the values of channel coefficients) can be surprisingly useful in a multiuser setting, illustrated by the idea of blind interference alignment that is introduced in this work. Specifically, we explore five network communication problems where the possibility of interference alignment, and consequently the total number of degrees of freedom (DoF) with channel uncertainty at the transmitters, are unknown. These problems share the common property that in each case the best known outer bounds are essentially robust to channel uncertainty and represent the outcome with interference alignment, but the best inner bounds-in some cases conjectured to be optimal-predict a total collapse of DoF, thus indicating the infeasibility of interference alignment under channel uncertainty at transmitters. For each of these settings we show that even with no knowledge of channel coefficient values at the transmitters, under certain heterogeneous block fading models, i.e., when certain users experience smaller coherence time/bandwidth than others, blind interference alignment can be achieved. In each case we also establish the DoF optimality of the blind interference alignment scheme.

265 citations


Journal ArticleDOI
TL;DR: It is shown that it is possible to achieve more than 1 degrees of freedom (DoF) based on only delayed CSIT in the 3-user interference channel and the 2-user X channel consisting of only single antenna nodes, and in other settings, retrospective interference alignment is feasible.
Abstract: Maddah-Ali and Tse recently introduced the idea of retrospective interference alignment, i.e., achieving interference alignment with only outdated (stale) channel state information at the transmitter (CSIT), in the context of the vector broadcast channel. Since the scheme relies on the centralized transmitter's ability to reconstruct all the interference seen in previous symbols, it is not clear if retrospective interference alignment can be applied in interference networks consisting of distributed transmitters and receivers, where interference is contributed by multiple transmitters, each of whom can reconstruct only the part of the interference caused by themselves. In this work, we prove that even in such settings, retrospective interference alignment is feasible. Specifically, we show that it is possible to achieve more than 1 degrees of freedom (DoF) based on only delayed CSIT in the 3-user interference channel and the 2-user X channel consisting of only single antenna nodes. Retrospective interference alignment is also shown to be possible in other settings, such as the 2-user multiple-input and multiple-output (MIMO) interference channel and with delayed channel output feedback.

222 citations


Journal ArticleDOI
TL;DR: This paper derives a suboptimal beamforming scheme based on a Markov bound, which performs reasonably well and generalizes the cases with perfect as well as without channel state information of the eavesdropper channel.
Abstract: Secrecy on the physical layer is a promising technique to simplify the overall cross-layer secrecy concept. In many recent works on the multiple antenna wiretap channel, perfect channel state information to the intended receiver as well as the passive eavesdropper are assumed. In this paper, the transmitter has only partial information about the channel to the eavesdropper, but full information on the main channel to the intended receiver. The applied channel model is the flat-fading multiple-input single-output wiretap channel. We minimize the outage probability of secure transmission under single-stream beamforming and the use of artificial noise in the null space of the main channel. Furthermore, we derive a suboptimal beamforming scheme based on a Markov bound, which performs reasonably well. The results generalize the cases with perfect as well as without channel state information of the eavesdropper channel. Numerical simulations illustrate the secrecy outage probability over the degree of channel knowledge and confirm the theoretical results.

Journal ArticleDOI
TL;DR: It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models.
Abstract: This paper studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss model is considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with intensities λ and λe, respectively. It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models. Therefore, under these assumptions, securing the network does not entail a loss in the per-node throughput. The achievability argument is based on a novel multihop forwarding scheme where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Second, an ergodic fading model with n source-destination pairs and ne eavesdroppers is considered. Employing the ergodic interference alignment scheme with an appropriate secrecy precoding, each user is shown to achieve a constant positive secret rate for sufficiently large n. Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on the performance of the proposed schemes is characterized.

Posted Content
TL;DR: This paper presents a Poisson-convergence result for a broad range of stationary (including lattice) networks subject to log-normal shadowing of increasing variance and proves the invariance of the Poisson limit with respect to the distribution of the additional shadowing or fading.
Abstract: An almost ubiquitous assumption made in the stochastic-analytic study of the quality of service in cellular networks is Poisson distribution of base stations. It is usually justified by various irregularities in the real placement of base stations, which ideally should form the hexagonal pattern. We provide a different and rigorous argument justifying the Poisson assumption under sufficiently strong log-normal shadowing observed in the network, in the evaluation of a natural class of the typical-user service-characteristics including its SINR. Namely, we present a Poisson-convergence result for a broad range of stationary (including lattice) networks subject to log-normal shadowing of increasing variance. We show also for the Poisson model that the distribution of all these characteristics does not depend on the particular form of the additional fading distribution. Our approach involves a mapping of 2D network model to 1D image of it "perceived" by the typical user. For this image we prove our convergence result and the invariance of the Poisson limit with respect to the distribution of the additional shadowing or fading. Moreover, we present some new results for Poisson model allowing one to calculate the distribution function of the SINR in its whole domain. We use them to study and optimize the mean energy efficiency in cellular networks.

Journal ArticleDOI
TL;DR: This paper addresses the mean square stabilization problem for discrete-time networked control systems over fading channels and identifies the channel feedback as a key component in eliminating the limitation on stabilization induced by the nonminimum phase zeros and high relative degree of the plant.
Abstract: This paper addresses the mean square stabilization problem for discrete-time networked control systems over fading channels. We show that there exists a requirement on the network over which an unstable plant can be stabilized. In the case of state feedback, necessary and sufficient conditions on the network for mean square stabilizability are derived. Under a parallel transmission strategy and the assumption that the overall mean square capacity of the network is fixed and can be assigned among parallel input channels, a tight lower bound on the overall mean square capacity for mean square stabilizability is presented in terms of the Mahler measure of the plant. The minimal overall capacity for stabilizability is also provided under a serial transmission strategy. For the case of dynamic output feedback, a tight lower bound on the capacity requirement for stabilization of SISO plants is given in terms of the anti-stable poles, nonminimum phase zeros and relative degree of the plant. Sufficient and necessary conditions are further derived for triangularly decoupled MIMO plants. The effect of pre- and post-channel processing and channel feedback is also discussed, where the channel feedback is identified as a key component in eliminating the limitation on stabilization induced by the nonminimum phase zeros and high relative degree of the plant. Finally, the extension to the case with output fading channels and the application of the results to vehicle platooning are presented.

Journal ArticleDOI
TL;DR: This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading, and shows how to generalize this strategy beyond Gaussian channel models.
Abstract: This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the “X channel” case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.

Journal ArticleDOI
TL;DR: An analytical model is presented to investigate the connectivity properties of one-dimensional VANETs in the presence of channel randomness, from a queuing theoretic perspective, and is useful to assess VANet connectivity properties in a fading channel.
Abstract: Vehicular ad hoc network (VANET) is a type of promising application-oriented network deployed along a highway for safety and emergency information delivery, entertainment, data collection, and communication. In this paper, we present an analytical model to investigate the connectivity properties of one-dimensional VANETs in the presence of channel randomness, from a queuing theoretic perspective. Connectivity is one of the most important issues in VANETs to ensure reliable dissemination of time-critical information. The effect of channel randomness caused by fading is incorporated into the analysis by modeling the transmission range of each vehicle as a random variable. With exponentially distributed inter-vehicle distances, we use an equivalent M/G/∞ queue for the connectivity analysis. Assuming that the network consists of a large number of finite clusters, we obtain analytical expressions for the average connectivity distance and the expected number of vehicles in a connected cluster, taking into account the underlying wireless channel. Three different fading models are considered for the analysis: Rayleigh, Rician and Weibull. The effect of log normal shadow fading is also analyzed. A distance-dependent power law model is used to represent the path loss in the channel. Further, the speed of each vehicle on the highway is assumed to be a Gaussian distributed random variable. The analytical model is useful to assess VANET connectivity properties in a fading channel.

Journal ArticleDOI
TL;DR: Magnetic induction (MI) is a promising technique for UWCNs that is not affected by large propagation delays, multipath propagation, and fading and the results prove the feasibility of MI communication in underwater environments.
Abstract: Although acoustic waves are the most versatile and widely used physical layer technology for underwater wireless communication networks (UWCNs), they are adversely affected by ambient noise, multipath propagation, and fading. The large propagation delays, low bandwidth, and high bit error rates of the underwater acoustic channel hinder communication as well. These operational limits call for complementary technologies or communication alternatives when the acoustic channel is severely degraded. Magnetic induction (MI) is a promising technique for UWCNs that is not affected by large propagation delays, multipath propagation, and fading. In this paper, the MI communication channel has been modeled. Its propagation characteristics have been compared to the electromagnetic and acoustic communication systems through theoretical analysis and numerical evaluations. The results prove the feasibility of MI communication in underwater environments. The MI waveguide technique is developed to reduce path loss. The communication range between source and destination is considerably extended to hundreds of meters in fresh water due to its superior bit error rate performance.

Journal ArticleDOI
TL;DR: This work considers MU detectors and channel estimators, with varying algorithm complexity, and shows that low-complexity algorithms provide the best tradeoff, even though more receiver iterations are needed to reach a desired performance.
Abstract: A family of iterative receivers is evaluated in terms of complexity and performance for the case of an uplink multi-user (MU) multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. The transmission over block fading channels is considered. The analyzed class of receivers is performing channel estimation inside the iterative detection loop, which has been shown to improve estimation performance. As part of our results we illustrate the ability of this type of receiver to reduce the required amount of pilot symbols. A remaining question to ask is which combinations of estimation and detection algorithms that provide the best trade-off between performance and complexity. We address this issue by considering MU detectors and channel estimators, with varying algorithm complexity. For MU detection, two algorithms based on parallel interference cancellation (PIC) are considered and compared with the optimal symbol-wise maximum a-posteriori probability (MAP) detector. For channel estimation, an algorithm performing joint minimum-mean-square-error (MMSE) estimation is considered along with a low complexity replica making use of a Krylov subspace method. An estimator based on the space alternating generalized expectation-maximization (SAGE) algorithm is also considered. Our results show that low-complexity algorithms provide the best tradeoff, even though more receiver iterations are needed to reach a desired performance.

Journal ArticleDOI
TL;DR: The outage probability of dual-hop cognitive amplify-and-forward relay networks subject to independent non-identically distributed Nakagami-m fading is examined and it is revealed that the diversity order is strictly defined by the minimum fading severity between the two hops of the secondary network.
Abstract: In this correspondence, the outage probability (OP) of dual-hop cognitive amplify-and-forward (AF) relay networks subject to independent non-identically distributed (i.n.i.d.) Nakagami-m fading is examined. We assume a spectrum-sharing environment, where two different strategies are proposed to determine the transmit powers of the secondary network. Specifically, the transmit power conditions of the proposed spectrum-sharing network are governed by either the combined power constraint of the interference on the primary network and the maximum transmission power at the secondary network or the single power constraint of the interference on the primary network. Closed-form lower bounds and asymptotic expressions for the OP are derived. Regardless of the transmit power constraint, we reveal that the diversity order is strictly defined by the minimum fading severity between the two hops of the secondary network. This aligns with the well-known result for conventional dual-hop AF relaying without spectrum sharing. Furthermore, the impact of the primary network on the diversity-multiplexing tradeoff is investigated. We confirm that the diversity-multiplexing tradeoff is independent of the primary network.

Journal ArticleDOI
TL;DR: This paper discusses over-the-air (OTA) test setup for multiple-input-multiple-output (MIMO) capable terminals with emphasis on channel modelling, and introduces two novel methods to generate fading emulator channel coefficients.
Abstract: This paper discusses over-the-air (OTA) test setup for multiple-input-multiple-output (MIMO) capable terminals with emphasis on channel modelling. The setup is composed of a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

Journal ArticleDOI
TL;DR: A novel generic framework for the capacity analysis of L-branch EGC/MRC over generalized fading channels is developed to derive new results for the gamma-shadowed generalized Nakagami-m fading model which can be a suitable model for the fading environments encountered by high frequency communications.
Abstract: Unified exact ergodic capacity results for L-branch coherent diversity combiners including equal-gain combining (EGC) and maximal-ratio combining (MRC) are not known. This paper develops a novel generic framework for the capacity analysis of L-branch EGC/MRC over generalized fading channels. The framework is used to derive new results for the gamma-shadowed generalized Nakagami-m fading model which can be a suitable model for the fading environments encountered by high frequency (60 GHz and above) communications. The mathematical formalism is illustrated with some selected numerical and simulation results confirming the correctness of our newly proposed framework.

Journal ArticleDOI
TL;DR: A unified analytical expression for the average bit error probability of dual-hop amplify- and-forward relaying systems operating in the presence of both fast fading and shadowing is proposed in terms of the bivariate H-Fox function.
Abstract: In this letter we propose a unified analytical expression for the average bit error probability of dual-hop amplify- and-forward relaying systems operating in the presence of both fast fading and shadowing. In order to provide a realistic end-to- end performance of the considered system we assume that both hops are subject to independent but not necessarily identically distributed Extended Generalized-K fading. Our newly derived formula is obtained in terms of the bivariate H-Fox function. A computationally efficient algorithm to evaluate the average bit error probability is also proposed. The accuracy of the proposed method is substantiated by various numerically evaluated and computer simulation results.

Journal ArticleDOI
TL;DR: Stochastic stability of centralized Kalman filtering for linear time-varying systems equipped with wireless sensors and the effect of system instability on the power budget is investigated.

Journal ArticleDOI
TL;DR: This paper proposes a novel and more generic closed-form approximation of the EE-SE trade-off for the multi-input multi-output (MIMO) Rayleigh fading channel which exhibits a greater accuracy for a wider range of SE values and antenna configurations.
Abstract: Along with spectral efficiency (SE), energy efficiency (EE) is becoming one of the key performance evaluation criteria for communication system. These two criteria, which are conflicting, can be linked through their trade-off. The EE-SE trade-off for the multi-input multi-output (MIMO) Rayleigh fading channel has been accurately approximated in the past but only in the low-SE regime. In this paper, we propose a novel and more generic closed-form approximation of this trade-off which exhibits a greater accuracy for a wider range of SE values and antenna configurations. Our expression has been here utilized for assessing analytically the EE gain of MIMO over single-input single-output (SISO) system for two different types of power consumption models (PCMs): the theoretical PCM, where only the transmit power is considered as consumed power; and a more realistic PCM accounting for the fixed consumed power and amplifier inefficiency. Our analysis unfolds the large mismatch between theoretical and practical MIMO vs. SISO EE gains; the EE gain increases both with the SE and the number of antennas in theory, which indicates that MIMO is a promising EE enabler; whereas it remains small and decreases with the number of transmit antennas when a realistic PCM is considered.

Journal ArticleDOI
18 May 2012
TL;DR: It is shown that the reverberation chamber emulates a rich isotropic multipath (RIMP), making it an extreme reference environment for testing of wireless devices, and a simple theory is presented that can accurately model measured throughput for a long-term evolution (LTE) system with orthogonal frequency-division multiplexing and multiple-input-multiple-output (MIMO).
Abstract: New over-the-air (OTA) measurement technology is wanted for quantitative testing of modern wireless devices for use in multipath. We show that the reverberation chamber emulates a rich isotropic multipath (RIMP), making it an extreme reference environment for testing of wireless devices. This thereby complements testing in anechoic chambers representing the opposite extreme reference environment: pure line-of-sight (LOS). Antenna diversity gain was defined for RIMP environments based on improved fading performance. This paper finds this RIMP-diversity gain also valid as a metric of the cumulative improvement of the 1% worst users randomly distributed in the RIMP environment. The paper argues that LOS in modern wireless systems is random due to randomness of the orientations of the users and their devices. This leads to the definition of cumulative LOS-diversity gain of the 1% worst users in random LOS. This is generally not equal to the RIMP-diversity gain. The paper overviews the research on reverberation chambers for testing of wireless devices in RIMP environments. Finally, it presents a simple theory that can accurately model measured throughput for a long-term evolution (LTE) system with orthogonal frequency-division multiplexing (OFDM) and multiple-input-multiple-output (MIMO), the effects of which can clearly be seen and depend on the controllable time delay spread in the chamber.

Book
06 Jan 2012
TL;DR: This volume gives a unified treatment of the TC framework that has been developed by the authors and their collaborators over the past decade, and presents TC results (exact, asymptotic, and bounds) on a simple model in order to illustrate a key strength of the framework.
Abstract: Transmission capacity (TC) is a performance metric for wireless networks that measures the spatial intensity of successful transmissions per unit area, subject to a constraint on the permissible outage probability (where outage occurs when the signal to interference plus noise ratio (SINR) at a receiver is below a threshold). This volume gives a unified treatment of the TC framework that has been developed by the authors and their collaborators over the past decade. The mathematical framework underlying the analysis (reviewed in Section 2) is stochastic geometry: Poisson point processes model the locations of interferers, and (stable) shot noise processes represent the aggregate interference seen at a receiver. Section 3 presents TC results (exact, asymptotic, and bounds) on a simple model in order to illustrate a key strength of the framework: analytical tractability yields explicit performance dependence upon key model parameters. Section 4 presents enhancements to this basic model — channel fading, variable link distances (VLD), and multihop. Section 5 presents four network design case studies well-suited to TC: (i) spectrum management, (ii) interference cancellation, (iii) signal threshold transmission scheduling, and (iv) power control. Section 6 studies the TC when nodes have multiple antennas, which provides a contrast vs. classical results that ignore interference.

Journal ArticleDOI
TL;DR: Highly power efficient and fully connected underwater communication networks (UWCNs) composed of transceiver and relay induction coils are presented and MI wireless communication is a promising alternative for UWCNs.
Abstract: Underwater physical medium is a challenging environment for communication using radio frequency (RF) or acoustic waves due to strong attenuation, delay, multi-path fading, power and cost limitations. Discovered a century ago, magneto-inductive (MI) communication technique stands as a strong alternative paradigm due to its independence of environmental impairments including multi-path fading, dynamic channels and high propagation delays experienced by acoustic waves. Furthermore, MI technique yields networking solutions exploiting low-cost, easily-deployable and flexible antenna structures, and the possibility of forming networks of magnetic waveguides defeating path loss. In this work, highly power efficient and fully connected underwater communication networks (UWCNs) composed of transceiver and relay induction coils are presented. Three dimensional (3D) UWCNs are analysed in terms of basic communication metrics, i.e, signal-to-noise ratio, bit-error rate, connectivity and communication bandwidth. The performance studies of realistic 3D networks covering hundreds of meters sea depths and a few km2 areas show that fully connected multi-coil networks with communication bandwidths extending from a few to tens of KHz are possible. Furthermore, the performance dependence on coil properties and network size is theoretically modelled. Results show that MI wireless communication is a promising alternative for UWCNs and future research challenges are pointed out.

Journal ArticleDOI
TL;DR: The lower bound is derived as a low-complexity and accurate alternative for developing a two-step algorithm to find a near global optimal precoder and shows that, with a constant shift, the lower bound actually offers a very accurate approximation to the average mutual information for various fading channels.
Abstract: This paper investigates the linear precoder design that maximizes the average mutual information of multiple-input multiple-output fading channels with statistical channel state information known at the transmitter. It formulates the design from the standpoint of finite-alphabet inputs, which leads to a problem that is very important in practice but extremely difficult in theory: First, the average mutual information lacks closed-form expression and involves prohibitive computational burden. Second, the optimization over the precoder is nonconcave and thus easily gets stuck in local maxima. To address these issues, this study first derives lower and upper bounds for the average mutual information, in which the computational complexity is reduced by several orders of magnitude compared to calculating the average mutual information directly. It proves that maximizing the bounds is asymptotically optimal and shows that, with a constant shift, the lower bound actually offers a very accurate approximation to the average mutual information for various fading channels. This paper further proposes utilizing the lower bound as a low-complexity and accurate alternative for developing a two-step algorithm to find a near global optimal precoder. Numerical examples demonstrate the convergence and efficacy of the proposed algorithm. Compared to its conventional counterparts, the proposed linear precoding method provides significant performance gain over existing precoding algorithms. The gain becomes more substantial when the spatial correlation of MIMO channels increases.

Journal ArticleDOI
TL;DR: Downlink SNR to CQI Mapping for LTE has been performed for Flat Rayleigh channel in fast fading in different transmission modes considering HARQ.
Abstract: Long Term Evolution (LTE) is a step towards the 4th generation (4G) of radio technologies designed to increase the capacity and speed of mobile wireless access. In Release 8, LTE was standardized by 3GPP as the successor of the Universal Mobile Telecommunication System (UMTS).Before full commercial deployment of LTE, downlink SNR to CQI mapping for different multiple antenna techniques can be of enormous significance for the operators. Such vital RF parameters should be tuned before full-fledged commercial launch. In LTE, Adaptive Modulation and Coding (AMC) has to ensure a BLER value smaller than 10%. The SNR-to-CQI mapping is required to achieve this goal. In this paper, Downlink SNR to CQI Mapping for LTE has been performed for Flat Rayleigh channel in fast fading in different transmission modes considering HARQ.

Journal ArticleDOI
TL;DR: This work derives closed-form expressions and calculation rules for the correlation coefficient of the overall interference power received at a certain point in space from three sources of correlation: node locations, channel, and traffic, and using common modeling assumptions.
Abstract: The temporal correlation of interference is a key performance factor of several technologies and protocols for wireless communications. A comprehensive understanding of interference correlation is especially important in the design of diversity schemes, whose performance can severely degrade in case of highly correlated interference. Taking into account three sources of correlation-node locations, channel, and traffic-and using common modeling assumptions-random homogeneous node positions, Rayleigh block fading, and slotted ALOHA traffic-we derive closed-form expressions and calculation rules for the correlation coefficient of the overall interference power received at a certain point in space. Plots give an intuitive understanding as to how model parameters influence the interference correlation.