scispace - formally typeset
Search or ask a question

Showing papers on "Fading published in 2015"


Journal ArticleDOI
TL;DR: It is shown that numerous open challenges, such as efficient SI suppression, high-performance FD MAC-layer protocol design, low power consumption, and hybrid FD/HD designs, have to be tackled before successfully implementing FD-based systems.
Abstract: The wireless research community aspires to conceive full duplex operation by supporting concurrent transmission and reception in a single time/frequency channel for the sake of improving the attainable spectral efficiency by a factor of two as compared to the family of conventional half duplex wireless systems. The main challenge encountered in implementing FD wireless devices is that of finding techniques for mitigating the performance degradation imposed by self-interference. In this article, we investigate the potential FD techniques, including passive suppression, active analog cancellation, and active digital cancellation, and highlight their pros and cons. Furthermore, the troubles of FD medium access control protocol design are discussed for addressing the problems such as the resultant end-to-end delay and network congestion. Additionally, an opportunistic decode-andforward- based relay selection scheme is analyzed in underlay cognitive networks communicating over independent and identically distributed Rayleigh and Nakagami-m fading channels in the context of FD relaying. We demonstrate that the outage probability of multi-relay cooperative communication links can be substantially reduced. Finally, we discuss the challenges imposed by the aforementioned techniques and a range of critical issues associated with practical FD implementations. It is shown that numerous open challenges, such as efficient SI suppression, high-performance FD MAC-layer protocol design, low power consumption, and hybrid FD/HD designs, have to be tackled before successfully implementing FD-based systems.

646 citations


Journal ArticleDOI
TL;DR: This paper analyzes the flat fading multiple-input multiple-output (MIMO) channel with one-bit ADCs and derives the exact channel capacity and proposes an efficient method to design the input symbols to approach the capacity achieving solution.
Abstract: With bandwidths on the order of a gigahertz in emerging wireless systems, high-resolution analog-to-digital convertors (ADCs) become a power consumption bottleneck. One solution is to employ low resolution one-bit ADCs. In this paper, we analyze the flat fading multiple-input multiple-output (MIMO) channel with one-bit ADCs. Channel state information is assumed to be known at both the transmitter and receiver. For the multiple-input single-output channel, we derive the exact channel capacity. For the single-input multiple-output and MIMO channel, the capacity at infinite signal-to-noise ratio (SNR) is found. We also derive upper bound at finite SNR, which is tight when the channel has full row rank. In addition, we propose an efficient method to design the input symbols to approach the capacity achieving solution. We incorporate millimeter wave channel characteristics and find the bounds on the infinite SNR capacity. The results show how the number of paths and number of receive antennas impact the capacity.

458 citations


Journal ArticleDOI
TL;DR: The achievable average rate of the proposed cooperative relaying system using non-orthogonal multiple access (NOMA) to improve the spectral efficiency is analyzed for independent Rayleigh fading channels, and its asymptotic expression is provided.
Abstract: In this letter, we propose the cooperative relaying system using non-orthogonal multiple access (NOMA) to improve the spectral efficiency. The achievable average rate of the proposed system is analyzed for independent Rayleigh fading channels, and also its asymptotic expression is provided. In addition, a suboptimal power allocation scheme for NOMA used at the source is proposed.

378 citations


Journal ArticleDOI
TL;DR: A unified performance analysis of a dual-hop relay system over the asymmetric links composed of both radio-frequency and unified free-space optical links under the effect of pointing errors is carried out.
Abstract: In this paper, we carry out a unified performance analysis of a dual-hop relay system over the asymmetric links composed of both radio-frequency (RF) and unified free-space optical (FSO) links under the effect of pointing errors. Both fixed and variable gain relay systems are studied. The RF link is modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of these systems in terms of the Meijer's G function. Based on these formulas, we offer exact closed-form expressions for the outage probability (OP), the higher order amount of fading, and the average bit error rate (BER) of a variety of binary modulations in terms of the Meijer's G function. Furthermore, an exact closed-form expression of the end-to-end ergodic capacity is derived in terms of the bivariate G function. Additionally, by using the asymptotic expansion of the Meijer's G function at the high-SNR regime, we derive new asymptotic results for the OP, the MGF, and the average BER in terms of simple elementary functions.

253 citations


Proceedings ArticleDOI
11 May 2015
TL;DR: In this article, a closed-form expression for the achievable rate was derived for the downlink of a cell-free massive MIMO system, where a very large number of distributed access points (APs) simultaneously serve a much smaller number of users.
Abstract: We consider the downlink of Cell-Free Massive MIMO systems, where a very large number of distributed access points (APs) simultaneously serve a much smaller number of users. Each AP uses local channel estimates obtained from received uplink pilots and applies conjugate beamforming to transmit data to the users. We derive a closed-form expression for the achievable rate. This expression enables us to design an optimal max-min power control scheme that gives equal quality of service to all users. We further compare the performance of the Cell-Free Massive MIMO system to that of a conventional small-cell network and show that the throughput of the Cell-Free system is much more concentrated around its median compared to that of the smallcell system. The Cell-Free Massive MIMO system can provide an almost 20-fold increase in 95%-likely per-user throughput, compared with the small-cell system. Furthermore, Cell-Free systems are more robust to shadow fading correlation than smallcell systems.

250 citations


Journal ArticleDOI
TL;DR: This article reviews an emerging wireless information and power transfer (WIPT) technique with an emphasis on its performance enhancement employing multi-antenna techniques and investigates the WIPT tradeoffs based on two typical multi- Antenna techniques: the limited feedback multi-Antenna technique for short-distance transfer; and the large-scale multiple-input multiple-output (LS-MIMO) technique for long- distance transfer.
Abstract: This article reviews an emerging wireless information and power transfer (WIPT) technique with an emphasis on its performance enhancement employing multi-antenna techniques. Compared to traditional wireless information transmission, WIPT faces numerous challenges. First, it is more susceptible to channel fading and path loss, resulting in a much shorter power transfer distance. Second, it gives rise to the issue of how to balance spectral efficiency for information transmission and energy efficiency for power transfer in order to obtain an optimal tradeoff. Third, there exists a security issue for information transmission in order to improve power transfer efficiency. In this context, multi-antenna techniques, e.g. energy beamforming, are introduced to solve these problems by exploiting spatial degree of freedom. This article provides a tutorial on various aspects of multi-antenna based WIPT techniques, with a focus on tackling the challenges by parameter optimization and protocol design. In particular, we investigate the WIPT tradeoffs based on two typical multi-antenna techniques: the limited feedback multi-antenna technique for short-distance transfer; and the large-scale multiple-input multiple-output (LS-MIMO, also known as massive MIMO) technique for long-distance transfer. Finally, simulation results validate the effectiveness of the proposed schemes.

221 citations


Proceedings ArticleDOI
08 Jun 2015
TL;DR: It is shown that it is possible to achieve very low error rates and latencies over a radio channel, also when considering fast fading signal and interference, channel estimation errors, and antenna correlation.
Abstract: Fifth generation wireless networks are currently being developed to handle a wide range of new use cases. One important emerging area is ultra-reliable communication with guaranteed low latencies well beyond what current wireless technologies can provide. In this paper, we explore the viability of using wireless communication for low-latency, high-reliability communication in an example scenario of factory automation, and outline important design choices for such a system. We show that it is possible to achieve very low error rates and latencies over a radio channel, also when considering fast fading signal and interference, channel estimation errors, and antenna correlation. The most important tool to ensure high reliability is diversity, and low latency is achieved by using short transmission intervals without retransmissions, which, however, introduces a natural restriction on coverage area.

210 citations


Journal ArticleDOI
TL;DR: A smart pilot assignment (SPA) scheme is proposed in this letter to improve the performance of users with severe pilot contamination by exploiting the large-scale characteristics of fading channels.
Abstract: A massive multiple-input multiple-output (MIMO) system, which utilizes a large number of antennas at the base station (BS) to serve multiple users, suffers from pilot contamination due to inter-cell interference. A smart pilot assignment (SPA) scheme is proposed in this letter to improve the performance of users with severe pilot contamination. Specifically, by exploiting the large-scale characteristics of fading channels, the BS first measures the inter-cell interference of each pilot sequence caused by the users with the same pilot sequence in other adjacent cells. Then, in contrast to the conventional schemes which assign the pilot sequences to the users randomly, the proposed SPA method assigns the pilot sequence with the smallest inter-cell interference to the user having the worst channel quality in a sequential way to improve its performance. Simulation results verify the performance gain of the proposed scheme in typical massive MIMO systems.

198 citations


Journal ArticleDOI
TL;DR: In this work, the performance and the capacity analysis of a fixed-gain amplify-and-forward (AF)-based dual-hop asymmetric radio frequency-free space optical (RF-FSO) communication system is performed and the effects of fading, turbulence, and pointing error are studied on the outage probability, average BER, and the channel capacity.
Abstract: In this work, the performance and the capacity analysis of a fixed-gain amplify-and-forward (AF)-based dual-hop asymmetric radio frequency–free space optical (RF–FSO) communication system is performed. The RF link experiences Nakagami-m fading and the FSO link experiences Gamma–Gamma turbulence. For this mixed RF–FSO cooperative system, novel and finite power series-based mathematical expressions for the cumulative distribution function, probability density function, and moment generating function of the end-to-end signal-to-noise ratio are derived. Using these channel statistics new finite power series-based analytical expressions are obtained for the outage probability, the average bit error rate (BER) for various binary and M-ary modulation techniques, and the average channel capacity of the considered system. The same analysis is also performed for the scenario when the FSO link undergoes significant pointing errors along with the Gamma–Gamma distributed turbulence. As a special case analytical expressions for the outage probability, BER, and channel capacity are also presented for a dual-hop asymmetric RF–FSO system where the RF link is Rayleigh distributed. Simulation results validate the proposed mathematical analysis. The effects of fading, turbulence, and pointing error are studied on the outage probability, average BER, and the channel capacity.

186 citations


Journal ArticleDOI
TL;DR: A novel simultaneous wireless information and power transfer scheme based on OC in IA wireless networks is proposed and the methods to reduce the complexity of the OC-based IA algorithms are summarized.
Abstract: IA is a promising technology for interference management in wireless networks. However, there are still some practical challenges. Signal to interference plus noise ratio (SINR) decrease is one of the key challenging issues due to the inherent property of IA and channel fading. Recent advances in OC, including multiuser diversity and antenna selection, can be applied in IA wireless networks to improve the SINR performance. In this article we review some existing research work on OC-based IA wireless networks. In addition, we propose a novel simultaneous wireless information and power transfer scheme based on OC in IA wireless networks. Simulation results are presented to show the performance comparison of these schemes. The methods to reduce the complexity of the OC-based IA algorithms are finally summarized.

183 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios, where the measurement data is separated into three categories, line-of-sight (LOS), obstructed line ofsight (OLOS) by vehicles, and non-line-ofsight due to buildings, with the help of video information recorded during the measurements.
Abstract: The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non-line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.

Journal ArticleDOI
TL;DR: This paper provides a comprehensive secrecy performance analysis and system design/optimization under a stochastic geometry framework, and presents explicit solutions on the optimal transmission parameters, including the wiretap code rates, the on-off transmission threshold and the power allocation ratio.
Abstract: In this paper, we study the secure multi-antenna transmission with artificial noise (AN) under slow fading channels coexisting with randomly located eavesdroppers. We provide a comprehensive secrecy performance analysis and system design/optimization under a stochastic geometry framework. Specifically, we first evaluate the secrecy outage performance, and derive a closed-form expression for the optimal power allocation ratio of the information signal power to the total transmit power that minimizes the secrecy outage probability (SOP). Subject to a SOP constraint, we then propose a dynamic parameter transmission scheme (DPTS) and a static parameter transmission scheme (SPTS) to maximize secrecy throughput, and provide explicit solutions on the optimal transmission parameters, including the wiretap code rates, the on-off transmission threshold and the power allocation ratio. Our results give new insight into secure transmission designs. For example, secrecy rate is a concave function of the power allocation ratio in DPTS, and AN plays a significant role under SOP constraints and in dense eavesdropper scenarios. In SPTS, transmission probability is a concave function of the power allocation ratio, and secrecy throughput is a quasi-concave function of the secrecy rate. Numerical results are demonstrated to validate our theoretical analysis.

Proceedings ArticleDOI
08 Jun 2015
TL;DR: In this article, the information-theoretic throughout achievable on a fading communication link when the receiver is equipped with one-bit analog-to-digital converters (ADCs) is investigated for the setting where neither the transmitter nor the receiver have a priori information on the realization of the fading channels.
Abstract: We investigate the information-theoretic throughout achievable on a fading communication link when the receiver is equipped with one-bit analog-to-digital converters (ADCs). The analysis is conducted for the setting where neither the transmitter nor the receiver have a priori information on the realization of the fading channels. This means that channel-state information needs to be acquired at the receiver on the basis of the one-bit quantized channel outputs. We show that least-squares (LS) channel estimation combined with joint pilot and data processing is capacity achieving in the single-user, single-receive-antenna case. We also investigate the achievable uplink throughput in a massive multiple-input multiple-output system where each element of the antenna array at the receiver base-station feeds a one-bit ADC. We show that LS channel estimation and maximum-ratio combining are sufficient to support both multiuser operation and the use of high-order constellations. This holds in spite of the severe non-linearity introduced by the one-bit ADCs.

Journal ArticleDOI
TL;DR: In this paper, the envelope-constrained H ∞ filtering problem is investigated for a class of discrete time-varying stochastic systems over a finite horizon that involves fading measurements, randomly occurring nonlinearities and mixed noises.

Journal ArticleDOI
TL;DR: This paper investigates the performance of an amplify-and-forward (AF) hybrid satellite-terrestrial relay network (HSTRN), where the links of the two hops undergo Shadowed-Rician and Rayleigh fading distributions, respectively.
Abstract: The integration of cooperative transmission into satellite networks is regarded as an effective strategy to increase the energy efficiency as well as the coverage of satellite communications. This paper investigates the performance of an amplify-and-forward (AF) hybrid satellite-terrestrial relay network (HSTRN), where the links of the two hops undergo Shadowed-Rician and Rayleigh fading distributions, respectively. By assuming that a single antenna relay is used to assist the signal transmission between the multi-antenna satellite and multi-antenna mobile terminal, and multiple interferers corrupt both the relay and destination, we first obtain the equivalent end-to-end signal-to-interference-plus-noise ratio (SINR) of the system. Then, an approximate yet very accurate closed-form expression for the ergodic capacity of the HSTRN is derived. The analytical lower bound expressions are also obtained to efficiently evaluate the outage probability (OP) and average symbol error rate (ASER) of the system. Furthermore, the asymptotic OP and ASER expressions are developed at high signal-to-noise ratio (SNR) to reveal the achievable diversity order and array gain of the considered HSTRN. Finally, simulation results are provided to validate of the analytical results, and show the impact of various parameters on the system performance.

Journal ArticleDOI
TL;DR: A dual-hop amplify-and-forward (AF) relaying scheme over shadowed Rician fading channels is investigated, and some useful engineering insights are manifested, such as simplified asymptotic outage performance results, the diversity order, and the impact on the number of antennas at the source and the destination.
Abstract: A dual-hop amplify-and-forward (AF) relaying scheme over shadowed Rician fading channels is investigated. Specifically, the source and destination nodes are equipped with $N$ and $M$ antennas, respectively, whereas the relay is equipped with a single antenna. Communication via satellite relaying represents a direct application of the considered infrastructure. To this end, we study the scenario when the source and the destination are terrestrial nodes, whereas the end-to-end communication is established through an intermediate AF relay node, which is a satellite. To fully exploit the spatial diversity provided by multiple antennas, maximum ratio transmission and maximum ratio combining are implemented at the source and the destination, respectively. First, a new closed-form expression for the probability density function (pdf) of the sum of independent and identically distributed (i.i.d.) squared shadowed Rician random variables is derived by assuming integer distribution parameters. Capitalizing on the latter pdf, new closed-form results for the cumulative distribution function (cdf) and the moment function of the end-to-end signal-to-noise ratio (SNR) are obtained. Particularly, the proposed unified analysis includes the channel-state-information (CSI)-assisted and the fixed-gain AF relaying protocols. New expressions for important performance measures, namely, the outage probability, the average symbol error probability (ASEP), and the ergodic capacity of the end-to-end SNR, are presented for both AF schemes. Moreover, some useful engineering insights are manifested, such as simplified asymptotic outage performance results, the diversity order, and the impact on the number of antennas at the source and the destination.

Journal ArticleDOI
TL;DR: The shadowed κ − μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels and is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.
Abstract: Using device-to-device communications as an under- lay for cellular communications will provide an exciting opportu- nity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ − μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami-m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ − μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.

Journal ArticleDOI
TL;DR: The aim is the development of (widely) linear fusion rules, as opposed to the unsuitable optimum log-likelihood ratio (LLR), which can effectively benefit from performance improvement via a large array, differently from existing suboptimal alternatives.
Abstract: In this paper, we provide a study of channel-aware decision fusion (DF) over a “virtual” multiple-input multiple-output (MIMO) channel in the large-array regime at the DF center (DFC). The considered scenario takes into account channel estimation and inhomogeneous large-scale fading between the sensors and the DFC. The aim is the development of (widely) linear fusion rules, as opposed to the unsuitable optimum log-likelihood ratio (LLR). The proposed rules can effectively benefit from performance improvement via a large array, differently from existing suboptimal alternatives. Performance evaluation, along with theoretical achievable performance and complexity analysis, is presented. Simulation results are provided to confirm the findings. Analogies and differences with uplink communication in a multiuser (massive) MIMO scenario are underlined.

Journal ArticleDOI
TL;DR: A general event-triggered framework is developed to deal with the finite-horizon H∞ filtering problem for discrete time-varying systems with fading channels, randomly occurring nonlinearities and multiplicative noises and a recursive linear matrix inequality approach is employed to design the desired filter gains.
Abstract: In this paper, a general event-triggered framework is developed to deal with the finite-horizon $H_{\infty}$ filtering problem for discrete time-varying systems with fading channels, randomly occurring nonlinearities and multiplicative noises. An event indicator variable is constructed and the corresponding event-triggered scheme is proposed. Such a scheme is based on the relative error with respect to the measurement signal in order to determine whether the measurement output should be transmitted to the filter or not. The fading channels are described by modified stochastic Rice fading models. Some uncorrelated random variables are introduced, respectively, to govern the phenomena of state-multiplicative noises, randomly occurring nonlinearities as well as fading measurements. The purpose of the addressed problem is to design a set of time-varying filter such that the influence from the exogenous disturbances onto the filtering errors is attenuated at the given level quantified by a $H_{\infty}$ -norm in the mean-square sense. By utilizing stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the $H_{\infty}$ filtering performance constraint, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired filter gains. Simulation results demonstrate the effectiveness of the developed filter design scheme.

Journal ArticleDOI
TL;DR: The communication between two legitimate peers in the presence of an external eavesdropper is studied from a physical-layer security perspective in the context of free-space optical (FSO) communications and viable mechanisms to eavesdrop are discussed.
Abstract: The communication between two legitimate peers in the presence of an external eavesdropper is studied from a physical-layer security perspective in the context of free-space optical (FSO) communications. We discuss viable mechanisms to eavesdrop the communication and study the effect of random optical irradiance fluctuations inherent to FSO communications on the probability of achieving a secure transmission. We observe that the joint effect of laser-beam divergence and turbulence-induced fading on the received irradiance, under certain conditions, allows an external eavesdropper close to the legitimate receiver to compromise the communication. Interestingly, we also observe that an eavesdropper placed close to the legitimate transmitter can easily compromise the communication by taking advantage of the larger attenuation suffered by the signal when propagating through the FSO link.

Journal ArticleDOI
TL;DR: The model transformation technique is first employed to simplify the addressed problem, and the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance.
Abstract: This technical note deals with the ${\cal H}_{\infty}$ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the ${\cal H}_{\infty}$ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon ${\cal H}_{\infty}$ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme.

Journal ArticleDOI
TL;DR: This paper considers random movement of people within the room, focusing on the impacts of shadowing and blocking on mobility and link system performance by investigating changes in the channel characteristics using the cumulative distribution function of the received power distribution and the delay profile.
Abstract: Visible light communications (VLC) is a new emerging technology, which provides both data transmission and illumination by utilizing the visible range (370-780 nm) of the electromagnetic spectrum. In order to maximize the available data rate and enhance the users mobility within an indoor environment, it is essential to characterize the communication channel. In this paper, we present both analytical and experimental results for a VLC system affected by movement of people for different indoor conditions (i.e., furnished office room, empty hall, and corridor). VLC systems utilize multiple light-emitting diodes mounted in the ceiling and the configuration is based on the nondirected line of sight. We consider random movement of people within the room, focusing on the impacts of shadowing and blocking on mobility and link system performance by investigating changes in the channel characteristics using the cumulative distribution function of the received power distribution and the delay profile. We demonstrate the behaviour of communication channels for different scenarios from corridor, the most robust against people movement induced fading, to the office rooms and halls, the most vulnerable to the received power fluctuation.

Journal ArticleDOI
TL;DR: The state-of-the-art research results on multi-antenna relay aided PHY-security as well as some secrecy performance optimization schemes are presented and large-scale MIMO relaying technology is focused on, which is effective in tackling various challenging issues for implementing wireless PHy-security.
Abstract: With the growing popularity of mobile Internet, providing secure wireless services has become a critical issue. Physical layer security (PHY-security) has been recognized as an effective means to enhance wireless security by exploiting wireless medium characteristics, for example, fading, noise, and interference. A particularly interesting PHY-security technology is cooperative relay due to the fact that it helps to provide distributed diversity and shorten access distance. This article offers a tutorial on various multi-antenna relaying technologies to improve security at physical layer. The state-of-the-art research results on multi-antenna relay aided PHY-security as well as some secrecy performance optimization schemes are presented. In particular, we focus on large-scale MIMO relaying technology, which is effective in tackling various challenging issues for implementing wireless PHY-security, such as short-distance interception without eavesdropper CSI and with imperfect legitimate CSI. Moreover, the future directions are identified for further enhancement of secrecy performance.

Journal ArticleDOI
TL;DR: A spatial diversity receiver scheme, say a single-input–multiple-output (SIMO) scheme, based on a light-emitting-diode source and multiple detectors is proposed to mitigate deep fading and it is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range.
Abstract: In underwater optical wireless communication (UOWC), a channel is characterized by abundant scattering/absorption effects and optical turbulence. Most previous studies on UOWC have been limited to scattering/absorption effects. However, experiments in the literature indicate that underwater optical turbulence (UOT) can cause severe degradation of UOWC performance. In this paper, we characterize an UOWC channel with both scattering/absorption and UOT taken into consideration, and a spatial diversity receiver scheme, say a single-input–multiple-output (SIMO) scheme, based on a light-emitting-diode (LED) source and multiple detectors is proposed to mitigate deep fading. The Monte Carlo based statistical simulation method is introduced to evaluate the bit-error-rate performance of the system. It is shown that spatial diversity can effectively reduce channel fading and remarkably extend communication range.

Journal ArticleDOI
TL;DR: An efficient energy scheduling algorithm for N-user fading multiple-access channels with energy harvesting to maximize the channel sum-rate, assuming that the side information of both the channel states and energy harvesting states for K time slots is known a priori.
Abstract: In this paper, we develop optimal energy scheduling algorithms for N-user fading multiple-access channels with energy harvesting to maximize the channel sum-rate, assuming that the side information of both the channel states and energy harvesting states for K time slots is known a priori, and the battery capacity and the maximum energy consumption in each time slot are bounded. The problem is formulated as a convex optimization problem with O (NK) constraints making it hard to solve using a general convex solver since the computational complexity of a generic convex solver becomes impractically high when the number of constraints is large. This paper gives an efficient energy scheduling algorithm, called the iterative dynamic water-filling algorithm, that has a computational complexity of O(NK 2 ) per iteration. For the single-user case, a dynamic water-filling method is shown to be optimal. Unlike the traditional water-filling algorithm, in dynamic water-filling, the water level is not constant but changes when the battery overflows or depletes. An iterative version of the dynamic water-filling algorithm is shown to be optimal for the case of multiple users. Even though in principle the optimality is achieved under large number of iterations, in practice convergence is reached in only a few iterations. Moreover, a single iteration of the dynamic water-filling algorithm achieves a sum-rate that is within (N-1)K nats of the optimal sum-rate.

Posted Content
TL;DR: It is shown that least-squares (LS) channel estimation combined with joint pilot and data processing is capacity achieving in the single-user, single-receive-antenna case and LS channel estimation and maximum-ratio combining are sufficient to support both multiuser operation and the use of high-order constellations.
Abstract: We investigate the information-theoretic throughout achievable on a fading communication link when the receiver is equipped with one-bit analog-to-digital converters (ADCs). The analysis is conducted for the setting where neither the transmitter nor the receiver have a priori information on the realization of the fading channels. This means that channel-state information needs to be acquired at the receiver on the basis of the one-bit quantized channel outputs. We show that least-squares (LS) channel estimation combined with joint pilot and data processing is capacity achieving in the single-user, single-receive-antenna case. We also investigate the achievable uplink throughput in a massive multiple-input multiple-output system where each element of the antenna array at the receiver base-station feeds a one-bit ADC. We show that LS channel estimation and maximum-ratio combining are sufficient to support both multiuser operation and the use of high-order constellations. This holds in spite of the severe nonlinearity introduced by the one-bit ADCs.

Journal ArticleDOI
TL;DR: The AFF scheme is named and it is shown that with this scheme, the eavesdropper will face a noncoherent Ricean fading single-input-multiple-output channel and the closed-form secrecy rate is difficult to obtain, but an exact expression is derived for the single-antenna-eavesdropper case and a lower bound for the multiantenna-Eaves dropper case, both of which can be numerically calculated conveniently.
Abstract: The artificial noise (AN) scheme is an efficient strategy for enhancing the secrecy rate of a multiple-input–single-output channel in the presence of a passive eavesdropper, whose channel state information is unavailable. Recently, a randomized beamforming scheme has been proposed for deteriorating the eavesdropper's bit-error-rate performance via corrupting its receiving signal by time-varying multiplicative noise. However, the secrecy rate of such a scheme has not been well addressed yet. In this paper, we name it the artificial fast fading (AFF) scheme and provide a comprehensive secrecy rate analysis for it. We show that with this scheme, the eavesdropper will face a noncoherent Ricean fading single-input–multiple-output channel. Although the closed-form secrecy rate is difficult to obtain, we derive an exact expression for the single-antenna-eavesdropper case and a lower bound for the multiantenna-eavesdropper case, both of which can be numerically calculated conveniently. Furthermore, we compare the AFF scheme with the AN scheme and show that their respective superiorities to each other depend on the number of antennas that the transmitter and the eavesdropper possessed, i.e., when the eavesdropper has more antennas than the transmitter does, the AFF scheme achieves a larger secrecy rate; otherwise, the AN scheme outperforms. Motivated by this observation, we propose a hybrid AN-AFF scheme and investigate the power allocation problem, which achieves better secrecy performance further.

Journal ArticleDOI
TL;DR: The results indicate that coordinated beamforming is most beneficial to users that are in the outer part of their cells yet in the inner part oftheir coordination cluster and that the optimal cluster cardinality for the typical user is small and it scales with the fading coherence.
Abstract: This paper characterizes the performance of coordinated beamforming with dynamic clustering. A downlink model based on stochastic geometry is put forth to analyze the performance of such a base station (BS) coordination strategy. Analytical expressions for the complementary cumulative distribution function (CCDF) of the instantaneous signal-to-interference ratio (SIR) are derived in terms of relevant system parameters, chiefly the number of BSs forming the coordination clusters, the number of antennas per BS, and the pathloss exponent. Utilizing this CCDF, with pilot overheads further incorporated into the analysis, we formulate the optimization of the BS coordination clusters for a given fading coherence. Our results indicate that: 1) coordinated beamforming is most beneficial to users that are in the outer part of their cells yet in the inner part of their coordination cluster and that 2) the optimal cluster cardinality for the typical user is small and it scales with the fading coherence. Simulation results verify the exactness of the SIR distributions derived for stochastic geometries, which are further compared with the corresponding distributions for deterministic grid networks.

Journal ArticleDOI
TL;DR: Investigation of the average throughput of a wireless-powered communications system, where an energy constrained source, powered by a dedicated power beacon (PB), communicates with a destination, shows that increasing the number of transmit antennas at the PB is an effective tool to improve theaverage throughput.
Abstract: This paper investigates the average throughput of a wireless-powered communications system, where an energy constrained source, powered by a dedicated power beacon (PB), communicates with a destination. It is assumed that the PB is capable of performing channel estimation, digital beamforming, and spectrum sensing as a communication device. Considering a time-splitting approach, the source first harvests energy from the PB equipped with multiple antennas, and then transmits information to the destination. Assuming Nakagami- $m$ fading channels, analytical expressions for the average throughput are derived for two different transmission modes, namely, delay tolerant and delay intolerant . In addition, closed-form solutions for the optimal time split, which maximize the average throughput are obtained in some special cases, i.e., high-transmit power regime and large number of antennas. Finally, the impact of cochannel interference is studied. Numerical and simulation results have shown that increasing the number of transmit antennas at the PB is an effective tool to improve the average throughput and the interference can be potentially exploited to enhance the average throughput, since it can be utilized as an extra source of energy. Also, the impact of fading severity level of the energy transfer link on the average throughput is not significant, especially if the number of PB antennas is large. Finally, it is observed that the source position has a great impact on the average throughput.

Posted Content
TL;DR: In this article, the performance of multiple-input multiple-output underwater wireless optical communication (MIMO UWOC) systems with on-off keying (OOK) modulation is analyzed.
Abstract: In this paper, we analytically study the performance of multiple-input multiple-output underwater wireless optical communication (MIMO UWOC) systems with on-off keying (OOK) modulation. To mitigate turbulence-induced fading, which is amongst the major degrading effects of underwater channels on the propagating optical signal, we use spatial diversity over UWOC links. Furthermore, the effects of absorption and scattering are considered in our analysis. We analytically obtain the exact and an upper bound bit error rate (BER) expressions for both optimal and equal gain combining. In order to more effectively calculate the system BER, we apply Gauss-Hermite quadrature formula as well as approximation to the sum of lognormal random variables. We also apply photon-counting method to evaluate the system BER in the presence of shot noise. Our numerical results indicate an excellent match between the exact and upper bound BER curves. Also {a good match} between {the} analytical results and numerical simulations confirms the accuracy of our derived expressions. Moreover, our results show that spatial diversity can considerably improve the system performance, especially for channels with higher turbulence, e.g., a $3\times1$ MISO transmission in a $25$ {m} coastal water link with log-amplitude variance of $0.16$ can introduce $8$ {dB} performance improvement at the BER of $10^{-9}$.