scispace - formally typeset
Search or ask a question
Topic

Fading

About: Fading is a research topic. Over the lifetime, 55489 publications have been published within this topic receiving 1061665 citations. The topic is also known as: fading channel & shadow fading.


Papers
More filters
Journal ArticleDOI
TL;DR: This work develops and analyzes space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network and demonstrates that these protocols achieve full spatial diversity in the number of cooperating terminals, not just theNumber of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes.
Abstract: We develop and analyze space-time coded cooperative diversity protocols for combating multipath fading across multiple protocol layers in a wireless network. The protocols exploit spatial diversity available among a collection of distributed terminals that relay messages for one another in such a manner that the destination terminal can average the fading, even though it is unknown a priori which terminals will be involved. In particular, a source initiates transmission to its destination, and many relays potentially receive the transmission. Those terminals that can fully decode the transmission utilize a space-time code to cooperatively relay to the destination. We demonstrate that these protocols achieve full spatial diversity in the number of cooperating terminals, not just the number of decoding relays, and can be used effectively for higher spectral efficiencies than repetition-based schemes. We discuss issues related to space-time code design for these protocols, emphasizing codes that readily allow for appealing distributed versions.

4,385 citations

Journal ArticleDOI
TL;DR: A novel scheme that first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination and achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols.
Abstract: Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required, such as those proposed by Laneman and Wornell (2003). The simplicity of the technique allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability, and efficiency in future 4G wireless systems.

3,153 citations

Journal ArticleDOI
01 Jun 2002
TL;DR: This work shows that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed, and proposes the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited.
Abstract: Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent time-varying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing. this scheme in a complete wireless system.

3,041 citations

Journal ArticleDOI
TL;DR: The results show that the proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-divisionmultiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes.
Abstract: Multiuser orthogonal frequency division multiplexing (OFDM) with adaptive multiuser subcarrier allocation and adaptive modulation is considered. Assuming knowledge of the instantaneous channel gains for all users, we propose a multiuser OFDM subcarrier, bit, and power allocation algorithm to minimize the total transmit power. This is done by assigning each user a set of subcarriers and by determining the number of bits and the transmit power level for each subcarrier. We obtain the performance of our proposed algorithm in a multiuser frequency selective fading environment for various time delay spread values and various numbers of users. The results show that our proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-division multiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes. We have also quantified the improvement in terms of the overall required transmit power, the bit-error rate (BER), or the area of coverage for a given outage probability.

2,925 citations

Journal ArticleDOI
TL;DR: The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, single-bounce fading, certain quasi-static fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted.
Abstract: Coding strategies that exploit node cooperation are developed for relay networks. Two basic schemes are studied: the relays decode-and-forward the source message to the destination, or they compress-and-forward their channel outputs to the destination. The decode-and-forward scheme is a variant of multihopping, but in addition to having the relays successively decode the message, the transmitters cooperate and each receiver uses several or all of its past channel output blocks to decode. For the compress-and-forward scheme, the relays take advantage of the statistical dependence between their channel outputs and the destination's channel output. The strategies are applied to wireless channels, and it is shown that decode-and-forward achieves the ergodic capacity with phase fading if phase information is available only locally, and if the relays are near the source node. The ergodic capacity coincides with the rate of a distributed antenna array with full cooperation even though the transmitting antennas are not colocated. The capacity results generalize broadly, including to multiantenna transmission with Rayleigh fading, single-bounce fading, certain quasi-static fading problems, cases where partial channel knowledge is available at the transmitters, and cases where local user cooperation is permitted. The results further extend to multisource and multidestination networks such as multiaccess and broadcast relay channels.

2,842 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
93% related
Wireless network
122.5K papers, 2.1M citations
92% related
Network packet
159.7K papers, 2.2M citations
91% related
Communications system
88.1K papers, 1M citations
91% related
Wireless ad hoc network
49K papers, 1.1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
2023772
20221,788
20211,352
20201,669
20191,953