scispace - formally typeset
Search or ask a question
Topic

Far East

About: Far East is a research topic. Over the lifetime, 6270 publications have been published within this topic receiving 74482 citations.


Papers
More filters
Journal ArticleDOI
03 May 2001-Nature
TL;DR: The results of a numerical climate-model experiment support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya–Tibetan plateau uplift and to Northern Hemisphere glaciation.
Abstract: The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau1,2,3,4 Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10–8 Myr ago4,5, or more recently However, the climatic consequences of this uplift remain unclear Here we use records of aeolian sediments from China6,7 and marine sediments from the Indian8,9,10 and North Pacific oceans11 to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9–8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean11, about 36–26 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 26 Myr ago The results of a numerical climate-model experiment, using idealized stepwise increases of mountain–plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya–Tibetan plateau uplift and to Northern Hemisphere glaciation

2,329 citations

Journal ArticleDOI
TL;DR: In this article, the authors used field evidence from Tibet and a reassessment of published data to suggest that continent-continent collision began around the Eocene/Oligocene boundary (∼34 Ma) and propose an alternative explanation for events at 55 Ma.
Abstract: Timing of the collision between India and Asia is the key boundary condition in all models for the evolution of the Himalaya-Tibetan orogenic system. Thus it profoundly affects the interpretation of the rates of a multitude of associated geological processes ranging from Tibetan Plateau uplift through continental extrusion across eastern Asia, as well as our understanding of global climate change during the Cenozoic. Although an abrupt slowdown in the rate of convergence between India and Asia around 55 Ma is widely regarded as indicating the beginning of the collision, most of the effects attributed to this major tectonic episode do not occur until more than 20 Ma later. Refined estimates of the relative positions of India and Asia indicate that they were not close enough to one another to have collided at 55 Ma. On the basis of new field evidence from Tibet and a reassessment of published data we suggest that continent-continent collision began around the Eocene/Oligocene boundary (∼34 Ma) and propose an alternative explanation for events at 55 Ma.

789 citations

Journal ArticleDOI
13 May 2005-Science
TL;DR: It is shown that mitochondrial DNA variation in isolated “relict” populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia.
Abstract: A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated “relict” populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia. There was an early offshoot, leading ultimately to the settlement of the Near East and Europe, but the main dispersal from India to Australia ∼65,000 years ago was rapid, most likely taking only a few thousand years.

696 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of low Arctic sea-ice minima in early autumn on the wintertime climate over Eurasia is investigated and the remote response in early winter is regarded as a stationary Rossby wave generated thermally through an anomalous turbulent heat fluxes as a result of anomalous ice-cover over the Barents-Kara Seas in late autumn, which tends to induce an amplification of the Siberian high causing colder conditions over the Far East.
Abstract: [1] Influence of low Arctic sea-ice minima in early autumn on the wintertime climate over Eurasia is investigated. Observational evidence shows that significant cold anomalies over the Far East in early winter and zonally elongated cold anomalies from Europe to Far East in late winter are associated with the decrease of the Arctic sea-ice cover in the preceding summer-to-autumn seasons. Results from numerical experiments using an atmospheric general circulation model support these notions. The remote response in early winter is regarded as a stationary Rossby wave generated thermally through an anomalous turbulent heat fluxes as a result of anomalous ice-cover over the Barents-Kara Seas in late autumn, which tends to induce an amplification of the Siberian high causing colder conditions over the Far East. The late-winter cold anomalies over Eurasia are also reproduced in our experiment, which is associated with the negative phase of the North Atlantic Oscillation.

613 citations

Journal ArticleDOI
TL;DR: In this article, Wang et al. showed that atmospheric heating induced by the rising surface temperatures on the Tibetan Plateau (TP) can enhance East Asian subtropical frontal rainfall, and the mechanism of the linkage was found to be through two distinct Rossby wave trains and the isentropic uplift to the east of the TP.
Abstract: [1] Observational evidence presented here indicates that the surface temperatures on the Tibetan Plateau (TP) have increased by about 1.8°C over the past 50 years. The precipitation pattern that is projected as a result of this warming resembles the leading pattern of precipitation variations in East Asia (EA). Numerical experiments with atmospheric general circulation models show that atmospheric heating induced by the rising TP temperatures can enhance East Asian subtropical frontal rainfall. The mechanism of the linkage is found to be through two distinct Rossby wave trains and the isentropic uplift to the east of the TP, which deform the western Pacific Subtropical High and enhance moisture convergence toward the EA subtropical front. The model calculations suggest that the past changes in TP temperatures and EA summer rainfall may be linked, and that projected future increases in TP temperatures may lead to further enhanced summer frontal rainfall in EA region.

575 citations


Network Information
Related Topics (5)
China
84.3K papers, 983.5K citations
81% related
Climate change
99.2K papers, 3.5M citations
74% related
Government
141K papers, 1.9M citations
73% related
Global warming
36.6K papers, 1.6M citations
72% related
Politics
263.7K papers, 5.3M citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202338
2022193
202162
202094
2019107
2018120