scispace - formally typeset
Search or ask a question
Topic

Fast ion conductor

About: Fast ion conductor is a research topic. Over the lifetime, 7253 publications have been published within this topic receiving 213193 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure that exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature, which represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes.
Abstract: Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

3,372 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Abstract: Solid-state electrolytes are attracting increasing interest for electrochemical energy storage technologies. In this Review, we provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications. We focus on recent advances in various classes of battery chemistries and systems that are enabled by solid electrolytes, including all-solid-state lithium-ion batteries and emerging solid-electrolyte lithium batteries that feature cathodes with liquid or gaseous active materials (for example, lithium–air, lithium–sulfur and lithium–bromine systems). A low-cost, safe, aqueous electrochemical energy storage concept with a ‘mediator-ion’ solid electrolyte is also discussed. Advanced battery systems based on solid electrolytes would revitalize the rechargeable battery field because of their safety, excellent stability, long cycle lives and low cost. However, great effort will be needed to implement solid-electrolyte batteries as viable energy storage systems. In this context, we discuss the main issues that must be addressed, such as achieving acceptable ionic conductivity, electrochemical stability and mechanical properties of the solid electrolytes, as well as a compatible electrolyte/electrode interface. This Review details recent advances in battery chemistries and systems enabled by solid electrolytes, including all-solid-state lithium-ion, lithium–air, lithium–sulfur and lithium–bromine batteries, as well as an aqueous battery concept with a mediator-ion solid electrolyte.

2,749 citations

Journal ArticleDOI
TL;DR: Li9.54Si1.74P1.44S11.7Cl0.6P3S12 as discussed by the authors showed that Li 9.54 Si 1.54P 1.74Si 1.44 S11.3 has high specific power that is superior to that of conventional cells with liquid electrolytes.
Abstract: Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries offer an attractive option owing to their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research efforts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with an exceptionally high conductivity (25 mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ∼0 V versus Li metal for Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance, especially at 100 ∘C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes. Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is also demonstrated. The development of all-solid-state batteries requires fast lithium conductors. Here, the authors report a lithium compound, Li9.54Si1.74P1.44S11.7Cl0.3, with an exceptionally high conductivity and demonstrate that all-solid-state batteries based on the compound have high power densities.

2,132 citations

Book
01 Jan 1984
TL;DR: In this paper, the authors present a detailed description of the properties of solid state chemistry, including point groups, space groups, and crystal structure, as well as some factors which influence crystal structure.
Abstract: What is Solid State Chemistry? Preparative Methods. Characterization of Inorganic Solids: Application of Physical Techniques. Thermal Analysis. X-ray Diffraction. Point Groups, Space Groups and Crystal Structure. Descriptive Crystal Chemistry. Some Factors Which Influence Crystal Structure. Crystal Defects and Non-Stoichiometry. Solid Solutions. Interpretation of Phase Diagrams. Phase Transitions. Ionic Conductivity and Solid Electrolytes. Electronic Properties and Band Theory: Metals, Semiconductors, Inorganic Solids, Colour. Other Electrical Properties. Magnetic Properties. Optical Properties: Luminescence, Lasers. Glass. Cement and Concrete. Refractories. Organic Solid State Chemistry. Appendixes. Index.

2,106 citations

Journal ArticleDOI
TL;DR: Insight is provided into the physical parameters affecting the diffusion process, to allow for more efficient and target-oriented research on improving solid-state ion conductors.
Abstract: This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host framework are analyzed and shown to have large impacts on the performance of solid-state electrolytes. A comprehensive identification of the candidate migrating species and structures is carried out. Not only the bulk properties of the conductors are explored, but the concept of tuning the conductivity through interfacial effects—specifically controlling grain boundaries and strain at the interfaces—is introduced. High-frequency dielectric constants and frequencies of low-energy optical phonons are shown as examples of properties that correlate with activation energy across many classes of ionic conductors. Experimental studies and theoretical results are...

1,567 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
90% related
Thin film
275.5K papers, 4.5M citations
88% related
Graphene
144.5K papers, 4.9M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
87% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023489
2022862
2021617
2020583
2019494
2018437