scispace - formally typeset
Search or ask a question
Topic

Fatigue limit

About: Fatigue limit is a research topic. Over the lifetime, 20489 publications have been published within this topic receiving 305744 citations. The topic is also known as: endurance limit & fatigue strength.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the tradeoffs of fatigue crack formation and growth regimes in low cycle and high cycle fatigue, including considerations of effects of notches of various scales, are discussed, and algorithms are summarized for computing nonlocal cyclic plastic shear strain and inferring fatigue resistance, both in terms of mean behavior and variability with microstructure.
Abstract: Further efforts to provide more direct dependence of fatigue life estimation methods on microstructure of alloy systems must consider various factors that are not explicitly addressed by conventional fatigue design tools such as the strain-life curve, the stress-life curve, the modified Goodman diagram, or fatigue limit concepts, or by traditional linear elastic fracture mechanics approaches. In this work, we offer insight from micromechanical perspectives on tradeoffs of fatigue crack formation and growth regimes in low cycle and high cycle fatigue, including considerations of effects of notches of various scales. Relations between remote loading conditions and microstructure-scale cyclic plasticity/crack behavior are considered as a function of stress amplitude and microstructure to support assessment of intrinsic microstructure fatigue resistance (percolation limits for connected microplasticity) as well as effects of extrinsic features such as non-metallic inclusions. Algorithms are summarized for computing nonlocal cyclic plastic shear strain and inferring fatigue resistance, both in terms of mean behavior and variability with microstructure. Several applications are presented, including intrinsic and extrinsic fatigue resistance of Ni-base superalloys, fatigue of polycrystals, cast A356-T6 Al alloy, and fretting fatigue of Ti–6Al–4V.

169 citations

Journal ArticleDOI
TL;DR: In this article, the effect of texture on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B, was studied at room temperature, and it was shown that the Coffin-Manson and Basquin relationships can be used to describe the fatigue resistance of the alloy.
Abstract: The effect of texture on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B, was studied at room temperature. It is shown that the Coffin–Manson and Basquin relationships can be used to describe the fatigue resistance of the alloy. The alloy loaded along the rolling direction exhibits only slightly better low-cycle fatigue resistance than that loaded along the transverse direction, due to the in-plane texture symmetry. The in-plane cases exhibit better fatigue behavior than the through-thickness loading. Neutron diffraction and synchrotron diffraction were employed to assist in making mechanistic understandings for the findings. The fundamental difference in the low-cycle fatigue behaviors between the in-plane and through-thickness loadings is attributed to the different activation sequences of twinning and detwinning mechanisms involved and, particularly, the greater requirement for c-axis compression of the grains during the through-thickness tests. The different activation sequences are essentially determined by the initial crystallographic texture, such that the inverted hysteresis-loop shapes are observed.

168 citations

Journal ArticleDOI
TL;DR: In this article, fatigue properties of magnesium alloys have been examined on extruded AZ31 bar under uniaxial cyclic loading by both strain and stress controlled conditions adding fatigue tests with mean stresses under stress controlling conditions, fatigue life evaluation method has been discussed along with the analysis of cyclic stress-strain behavior.

168 citations

Journal ArticleDOI
TL;DR: In this paper, high cycle fatigue (HCF) tests were performed for as-built, polished and shot-peened samples to investigate the capability of selective laser melting (SLM) for these applications.
Abstract: Selective laser melting (SLM) is a relatively new additive manufacturing (AM) technology which uses laser energy for manufacturing in a layered pattern. The unique manufacturing process of SLM offers a competitive advantage in case of very complex and highly customized parts having quasi-static mechanical properties comparable to those of wrought materials. However, it is not currently being harnessed in dynamic applications due to the lack of reliable fatigue data. The manufacturing process shows competitive advantages particularly in the aerospace and medical industry in which Ti-6Al-4V is commonly used, especially for high performance and dynamic applications. Therefore, in this exploratory research, high cycle fatigue (HCF) tests were performed for as-built, polished and shot-peened samples to investigate the capability of SLM for these applications. As-built samples showed a drastic decrement of fatigue limit due to poor surface quality (Ra ≈ 13 µm) obtained from the SLM process. Polishing improved the fatigue limit to more than 500 MPa, the typical value for base material. The effect of shot-peening proved to be antithetical to the expected results. In this context, fractographic analysis showed that very small remnant porosity (less than 0.4%) played a critical role in fatigue performance.

168 citations

Journal ArticleDOI
TL;DR: In this paper, a microstructural change after laser welding and its effect on the tensile and fatigue properties in dual phase (DP) steels has been evaluated for automotive applications due to their higher tensile strength, better initial work hardening along with larger elongation compared to conventional grade of steels.
Abstract: To reduce fuel consumption and greenhouse gas emissions, dual phase (DP) steels have been considered for automotive applications due to their higher tensile strength, better initial work hardening along with larger elongation compared to conventional grade of steels. In such applications welding and joining have to be involved, which would lead to a localized alteration of materials and create potential safety and reliability issues under cyclic loading. The aim of this investigation was to evaluate microstructural change after laser welding and its effect on the tensile and fatigue properties in DP600 steel. The welding resulted in a significant increase of hardness in the fusion zone, but also the formation of a soft zone in the outer heat-affected zone (HAZ). While the ductility decreased after welding, the yield strength increased and the ultimate tensile strength remained almost unchanged. Fatigue life at higher stress amplitudes was almost the same between the base metal and welded joints despite slightly lower fatigue limit after welding. Tensile fracture and fatigue failure at higher stress amplitudes occurred at the outer HAZ. Fatigue crack initiation was observed to occur from the specimen surface and crack propagation was characterized by the characteristic mechanism of striation formation. Dimples and deformation bands were observed in the fast propagation area.

167 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
91% related
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Welding
206.5K papers, 1.1M citations
86% related
Alloy
171.8K papers, 1.7M citations
85% related
Microstructure
148.6K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023248
2022586
2021616
2020684
2019749
2018712