scispace - formally typeset
Search or ask a question
Topic

Fatigue limit

About: Fatigue limit is a research topic. Over the lifetime, 20489 publications have been published within this topic receiving 305744 citations. The topic is also known as: endurance limit & fatigue strength.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of stress ratio on high-cycle fatigue (HCF) and very-high cycle fatigue behavior of a bimodal Ti-6Al-4V alloy were systematically investigated.
Abstract: The effects of stress ratio on high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) behavior of a Ti-6Al-4V alloy were systematically investigated in this paper. Fatigue tests with ultrasonic frequency (20 kHz) were performed on specimens of a bimodal Ti-6Al-4V alloy with stress ratios of -1, -0.5, -0.1, 0.1 and 0.5. Three types of crack initiation mode were observed on the fracture surfaces of the specimens that failed in the HCF and the VHCF regimes, which were explicitly classified as surface-without-facets, surface-with-facets and interior-with-facets. With the increase of stress ratio from 1 to 0.5, the number of specimens for surface-without-facets decreased, that for surface-with-facets increased, and that for interior-with-facets increased first and then decreased. For the failure types of surface-with-facets and interior-with-facets, the fatigue strength decreased sharply in the VHCF regime, and the S-N curve switched from an asymptote shape to a duplex shape. Then, a new model based on Poisson defect distribution was proposed to describe the effects of stress ratio on the occurrence of different failure types, i.e., the competition of alternative failure types. The observations also showed that there is a rough area at the crack initiation region for interior initiation cases, and the values of the stress intensity factor range for the rough area are within a small range, with the mean value being close to the threshold for the crack starting to grow in vacuum environment of the alloy. The estimated value of plastic zone size at the periphery of rough area is close to the average diameter of the primary cc grains of the alloy. (C) 2014 Elsevier B.V. All rights reserved.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors used critical distance concepts that employ the stress distribution in the vicinity of the notch for predicting the high cycle fatigue (HCF) lives of notched cylindrical Ti-6Al-4V specimens.

115 citations

Journal ArticleDOI
29 Jun 2018
TL;DR: In this paper, the impact of heat treatment, machining, and micro-shot-peening on the fatigue strength of DMLS-produced Maraging Steel MS1, when it is used in the “as fabricated” state, was investigated experimentally.
Abstract: The main motivations for this study arise from the need for an assessment of the fatigue performance of DMLS-produced Maraging Steel MS1, when it is used in the “as fabricated” state. The literature indicates a lack of knowledge from this point of view; moreover, the great potentials of the additive process may be more and more incremented, if an easier and cheaper procedure could be used after the building stage. The topic has been tackled experimentally, investigating the impact of heat treatment, machining, and micro-shot-peening on the fatigue strength with respect to the “as built state”. The results indicate that heat treatment may improve the fatigue response, as an effect of the relaxation of the process-induced tensile residual stresses. Machining can also be effective, but it must be followed (not preceded) by shot-peening, to benefit from the compressive residual stress state generated by the latter. Moreover, heat treatment and machining are related by a strong positive interaction, meaning their effects are synergistically magnified when they are applied together. The experimental study has been completed by fractographic as well as micrographic analyses, investigating the impact of the heat treatment on the actual microstructure induced by the stacking process.

115 citations

Journal ArticleDOI
TL;DR: In this paper, a fractography study indicated that fatigue cracking initiated from subsurface or surface inclusions and induced clusters of slip bands during the rotating bending test, resulting in a cleavage fracture over a large area.
Abstract: Samples prepared from as-extruded AZ61A bars (18 mm in diameter) were used in a rotating bending test. The relation between stress amplitude and cycles to failure has been constructed, as well as the cycles to failure at two specific stress amplitudes. The probability of failure at these two specific stress levels was also analyzed. This study finally provided the predicted fatigue strength at 10 7 cycles with different probabilities (10 to 90%). A fractography study indicated that fatigue cracking initiated from subsurface or surface inclusions. These inclusions near the surface served as stress raisers and induced clusters of slip bands during the rotating bending test. After initiation, the cracks grew under the dominant shear stress and resulted in a cleavage fracture over a large area. Microscopic cracks occurred, resulting from the induced deformation twins that developed from the blunting process. Consequently, the propagation of cracks followed the existence of microscopic cracks and resulted in a transgranular fracture.

114 citations

Journal ArticleDOI
TL;DR: In this article, fatigue tests were conducted on a zirconium-based bulk metallic glass (BMG), BMG-11 (Zr−10Al−5Ti−17.9Cu−14.6Ni, atomic percent), in air and vacuum to elucidate the possible environmental effects.

114 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
91% related
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Welding
206.5K papers, 1.1M citations
86% related
Alloy
171.8K papers, 1.7M citations
85% related
Microstructure
148.6K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023248
2022586
2021616
2020684
2019749
2018712