scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
TL;DR: The implications of post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions are suggested, including their potential application as targets for therapeutic intervention.
Abstract: Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.

42 citations

Journal ArticleDOI
TL;DR: Recent developments in the understanding of the mechanisms of EFA/LCPUFA transport by the human placenta and the role of the fatty acid-binding proteins in the sequestration of maternal EFA or LCPUFA for fetal delivery are discussed.
Abstract: It is generally accepted that essential fatty acids (EFA) and their long-chain polyunsaturated fatty acid (LCPUFA) derivatives play a crucial role in fetal development and pregnancy outcome. Surprisingly, however, little is known about the transport and metabolism of EFA and LCPUFA in the feto-placental unit. The critical importance of maternal LCPUFA synthesis and the subsequent preferential transport of these by the placenta to the fetus is now well recognized, however underlying mechanisms of these processes are poorly understood. Increasing evidence suggests that the cytosolic and plasma membrane-associated fatty acid-binding proteins (FABP and FABPpm' respectively) are involved in cellular fatty acid uptake, transport, and metabolism in several tissues: however, no information is available for the placenta. These proteins may also function in the fine-tuning of cellular events by modulating the metabolism of LCPUFA implicated in the regulation of cell growth and differentiation. In this review recent developments in the understanding of the mechanisms of EFA/LCPUFA transport by the human placenta and the role of the fatty acid-binding proteins in the sequestration of maternal EFA/LCPUFA for fetal delivery are discussed.

42 citations

Journal ArticleDOI
TL;DR: It is concluded that the SSP-binding protein is localized to the myocardial cell membrane and might be involved in the uptake or transport of long-chain fatty acids.

42 citations

Journal ArticleDOI
TL;DR: The results suggest that genotypes of SCD and FABP4 may in part affect meat quality in Holstein and that SCD genotype possibly had effect on composition of C18:1 and monounsaturated fatty acid.
Abstract: Fatty acid composition of adipose tissue has been recognized as an important carcass trait because of its relationship with eating quality such as favorable beef flavor and tenderness. Therefore, we investigated the effects of genetic polymorphisms of liver X receptor, alpha (LXR), stearoyl-CoA desaturase (SCD), Fatty acid synthase (FASN), and Fatty acid binding protein 4 (FABP4) on fatty acid composition in intramuscular fat tissue of Holstein steers. The major allele frequencies were 0.705 in SCD, 0.518 in FABP4, 0.888 in FASN, and 0.984 in LXR. Genotyping of SCD showed significant effect on C14:0, C14:1, C18:0 and saturated fatty acid (P < 0.05). In addition, the result suggested that SCD genotype possibly had effect on composition of C18:1 and monounsaturated fatty acid. Genotype of FABP4 had significant effect on composition of C16:0. Effect of LXR genotypes could not be analyze because of extremely biased genotype frequencies. Our results suggest that genotypes of SCD and FABP4 may in part affect meat quality in Holstein.

42 citations

Journal ArticleDOI
N. C. Fournier1, M. A. Richard1
TL;DR: Evidence is presented that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial β-oxidative system and appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell.
Abstract: Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplas-mic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial β-oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.

42 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851