scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the current understanding of mammalian fatty acid (FA) metabolism with respect to epidermal barrier abrogation and repair is provided, including new insights into cellular FA transport and metabolism.
Abstract: Acute perturbations are followed by barrier repair and enhanced lipid synthesis, as well as cellular fatty acid trafficking, yet irritation of the skin may be induced by repeat disturbance of barrier function. Recently, new insights in cellular fatty acid transport and metabolism have evolved with respect to skin irritation and barrier disturbances: (1) Employing sodium dodecyl sulfate, skin irritation is accompanied by the induction of an epidermal (E) cytosolic fatty acid binding protein (FABP) associated with enhanced barrier repair. Whether E-FABP contributes to the water barrier function in normal skin remains to be elucidated; (2) Cutaneous inflammation, as it occurs in irritant contact dermatitis, can be reduced by peroxisome proliferating activated receptor (PPAR) agonists, such as linoleic acid, with clinical effects comparable to that of glucocorticoids; (3) PPARα agonists accelerate barrier recovery and enhance lamellar body synthesis, neutral lipid synthesis, in particular that of ceramides and cholesterol; (4) PPARα agonists increase the minimal erythema dose in UVB-irradiated human skin. This review provides a brief overview of the current understanding of mammalian fatty acid (FA) metabolism with respect to epidermal barrier abrogation and repair, including new insights into cellular FA transport and metabolism.

37 citations

Journal ArticleDOI
TL;DR: A finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells is found, mainly schistosomulum, adult worm and egg.
Abstract: Sm14 is a 14-kDa vaccine candidate antigen from Schistosoma mansoni that seems to be involved in cytoplasmic trafficking of fatty acids. Although schistosomes have a high requirement for lipids, they are not able to synthesize fatty acids and sterols de novo. Thus, they must acquire host lipids. In order to determine whether Sm14 is present in different stages of the life cycle of the parasite, we performed RT-PCR. Sm14 mRNA was identified in all stages of the life cycle studied, mainly schistosomulum, adult worm and egg. Additionally, we used a rabbit anti-Sm14 polyclonal antibody in an indirect immunofluorescence assay to localize Sm14 in adult worm sections. The basal lamella of the tegument and the gut epithelium were strongly labeled. These tissues have a high flow of and demand for lipids, a finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells.

37 citations

Journal ArticleDOI
TL;DR: Investigation of hBRIE 380i cells suggests that I-FABP can target LCFA to triglyceride synthesis pathway, but raises the possibility that other differentiation-dependent factors may have a role in LCFA targeting.

37 citations

Journal ArticleDOI
TL;DR: Almost all alveolar macrophages in the mouse lung were strongly immunoreactive for epidermal-type fatty acid binding protein, while a substantial number of the type II cells were immunonegative.
Abstract: Almost all alveolar macrophages in the mouse lung were strongly immunoreactive for epidermal-type fatty acid binding protein. At the electron microscope level, the immunoreactive material was localized diffusely in the cytoplasm but not within the nucleus. A certain number of alveolar type II epithelial cells were also immunoreactive for the protein with variable immuno-intensity, while a substantial number of the type II cells were immunonegative. No immunoreactive interstitial fibroblasts were encountered. Based on the present findings, possible roles of epidermal-type fatty acid binding protein in the host-defence mechanism played by alveolar macrophages are suggested.

37 citations

Journal ArticleDOI
TL;DR: Although the T94A substitution did not alter the affinity of human L‐FABP for long chain fatty acids, it significantly altered the structure and stability, as well as the conformational and functional response to these ligands.
Abstract: The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands.

37 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851