scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
TL;DR: Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) α, and PPARα-regulated proteins such as fatty acid transport protein (FATP) and fatty acid translocase.
Abstract: Although studies performed in vitro and with transfected cells in culture suggest a role for liver fatty acid binding protein (L-FABP) in regulating fatty acid oxidation and fat deposition, the physiological significance of this possibility is not completely clear. To begin to address this question, the effect of L-FABP gene ablation on phenotype of standard rodent chow-fed male mice was examined with increasing age up to 18 months. While young (2-3 months old) L-FABP null mice displayed no visually obvious phenotype, with increasing age >9 months the L-FABP null mice were visibly larger, exhibiting increased body weight due to increased fat and lean tissue mass. Liver lipid concentrations were unaffected by L-FABP gene ablation with the exception of triacylglycerol, which was decreased by 74% in the livers of 3-month-old mice. Likewise, serum lipid levels were not altered in L-FABP null mice with the exception of triacylglycerol, which was increased in the serum of 18-month-old mice. Increased body weight, fat tissue mass, and lean tissue mass in 18-month-old L-FABP null mice were accompanied by increased hepatic levels of low-density lipoprotein (LDL) receptor, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARalpha-regulated proteins such as fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36), carnitine palmitoyl transferase I (CPT I), and lipoprotein lipase (LPL). A key enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase, was down-regulated in L-FABP null mice. These findings were consistent with a proposed role for L-FABP as an important physiological regulator of PPARalpha.

35 citations

Journal ArticleDOI
TL;DR: The present data suggest that 3-thia fatty acids increase both the transport of fatty acids into the mitochondria and the capacity of the beta-oxidation process, which opens the possibility that mitochondrial HMG-CoA synthase and CPT-II retain some control of ketone body formation.

35 citations

Journal ArticleDOI
TL;DR: DvA-1 therefore represents an example of a new class of lipid binding protein, and is the first product of a polyprotein with this activity to be described.

35 citations

Journal ArticleDOI
01 Jul 2000-Lipids
TL;DR: Although both proteins enhanced phospholipid synthesis, the effect of L-FABP was much greater, consistent with previous work suggesting that these two FABP differentially affect lipid metabolism.
Abstract: Although fatty acid-binding proteins (FABP) differentially affect fatty acid uptake, nothing is known regarding their role(s) in determining cellular phospholipid levels and phospholipid fatty acid composition. The effects of liver (L)- and intestinal (I)-FABP expression on these parameters were determined using stably transfected L-cells. Expression of L- and I-FABP increased cellular total phospholipid mass (nmol/mg protein) 1.7- and 1.3-fold relative to controls, respectively. L-FABP expression increased the masses of choline glycerophospholipids (ChoGpl) 1.5-fold, phosphatidylserine (PtdSer) 5.6-fold, ethanolamine glycerophospholipids 1.4-fold, sphingomyelin 1.7-fold, and phosphatidylinositol 2.6-fold. In contrast, I-FABP expression only increased the masses of ChoGpl and PtdSer, 1.2- and 3.1-fold, respectively. Surprisingly, both L- and I-FABP expression increased ethanolamine plasmalogen mass 1.6- and 1.1-fold, respectively, while choline plasmalogen mass was increased 2.3- and 1.7-fold, respectively. The increase in phospholipid levels resulted in dramatic 48 and 33% decreases in the cholesterol-to-phospholipid ratio in L- and I-FABP expressing cells, respectively. L-FABP expression generally increased polyunsaturated fatty acids, primarily by increasing 20:4n-6 and 22:6n-3, while decreasing 18:1n-9 and 16:1n-7. I-FABP expression generally increased only 20:4n-6 proportions. Hence, expression of both I- and L-FABP differentially affected phospholipid mass, class composition, and acyl chain composition. Although both proteins enhanced phospholipid synthesis, the effect of L-FABP was much greater, consistent with previous work suggesting that these two FABP differentially affect lipid metabolism.

35 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851