scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
TL;DR: The cross- talk between the two protein families is discussed and how this cross-talk contributes to targeted signaling with branched-chain fatty acids.
Abstract: Branched-chain fatty acids are potent regulators of gene expression. Among them are the vitamin A-derived retinoic acids, which are involved in cell growth and differentiation, and the chlorophyll-derived phytol metabolites such as phytanic and pristanic acids, which affect catabolic lipid metabolism. Gene expression regulated by these signaling molecules is mediated by two protein families. These are, on the one hand, the intracellular lipid binding proteins, i.e. cellular retinoic acid binding protein and liver-type fatty acid binding protein, which are responsible for ligand-transport to the nucleus. On the other hand are the ligand-activated nuclear receptors, i.e. the retinoic acid receptors for retinoic acids and the peroxisome proliferator-activated receptors for the phytol metabolites. In this review, we discuss the cross-talk between the two protein families and how this cross-talk contributes to targeted signaling with branched-chain fatty acids.

31 citations

Journal ArticleDOI
TL;DR: L-FABP is highly and intensely expressed in metaplasia and in a subset of gastric adenocarcinomas, without association with progression, prognosis and fatty acid synthase status of the carcinoma.
Abstract: Objective: To investigate the relation of liver-type fatty-acid-binding protein (L-FABP) expression to the clinicopathological characteristics or the fatty acid synthase status of g

31 citations

Journal ArticleDOI
TL;DR: The structure of E. coli-derived rat intestinal fatty acid-binding protein has been refined and it is suggested that the free energy of dehydration of the binding site may be as important for the energy of thebinding reaction as thefree energy of stabilization of the fatty acid: protein complex.
Abstract: The structure of E. coli-derived rat intestinal fatty acid-binding protein has recently been refined to 1.2 Athout bound fatty acid and to 2.0 A and1.75 A with bound hexadecanoate (palmitate) and 9Z-octadecenoate (oleate), respectively. The structure of E. coli-derived human muscle fatty acid-binding protein has also been solved to 2.1 A with a C16 bacterial fatty acid. Both proteins contain 10 anti-parallel β-strands in a + 1, +1, +1… motif. The strands are arranged in two 73x03B2;-pleated sheets that are orthogonally oriented. In each case, the fatty acid is enclosed by the β-sheets and is bound to the proteins by feeble forces. These feeble forces consist of (i) a hydrogen bonding network between the fatty acid’s carboxylate group, ordered solvent, and side chains of polar/ionizable amino acid residues; (ii) van der Waals contacts between the methylene chain of the fatty acid and the side chain atoms of hydrophobic and aromatic residues; (iii) van der Waals interactions between the ϖ-terminal methyl and the component methenyls of the phenyl side chain of a Phe which serves as an adjustable terminal sensor situated over a surface opening or portal connecting interior and exterior solvent; and (iv) van der Waals contacts between methylenes of the alkyl chain and oxygens of ordered waters that have been located inside the binding cavity. These waters are positioned over one face of the ligand and are held in place by hydrogen bonding with one another and with the side chains of protein’s polar and ionizable residues. Binding of the fatty acid ligand is associated with minimal adjustments of the positions of main chain or side chain atoms. However, acquisition of ligand is associated with removal of ordered interior solvent suggesting that the free energy of dehydration of the binding site may be as important for the energy of the binding reaction as the free energy of stabilization of the fatty acid: protein complex.

31 citations

Journal ArticleDOI
TL;DR: A fluorescence resonance energy transfer (FRET) assay is used to examine the rate and mechanism of transfer of a fluorescent long-chain fatty acid from B-FABP to phospholipid vesicles, and the rate of transfer is shown to be independent of buffer ionic strength and dramatically enhanced by the presence of specific anionicospholipids.
Abstract: Mammalian fatty acid-binding proteins (FABP) are a family of intracellular proteins (approx 15 kDa) that bind long-chain fatty acids (FA) with high affinity. They are believed to serve as cytoplasmic transporters of FA and to target FA to specific cellular sites of utilization. Several different FABPs are expressed in neural tissue, including brain FABP (B-FABP), myelin FABP (M-FABP), and heart FABP (H-FABP). We have previously shown that H-FABP transfers FA via direct collisional interactions with acceptor model membranes. In the present studies, we use a fluorescence resonance energy transfer (FRET) assay to examine the rate and mechanism of transfer of a fluorescent long-chain fatty acid from B-FABP to phospholipid vesicles. The rate of transfer is shown to be independent of buffer ionic strength and dramatically enhanced by the presence of specific anionic phospholipids. These results are consistent with a mechanism by which FA are transferred from B-FABP to phospholipid membranes by a transient collision-based mechanism.

31 citations

Journal ArticleDOI
TL;DR: Findings in this report contribute to the understanding of skeletal muscle lipid metabolism during exercise and muscle contractions.
Abstract: New Findings What is the topic of this review? This report addresses novel mechanisms regulating the utilization of long-chain fatty acids, with emphasis on FAT/CD36 and lipolysis of intramuscular triacylglycerol in skeletal muscle during exercise and contractions. What advances does it highlight? Recent findings show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) collectively account for at least 98% of total triacylglycerol lipase activity in skeletal muscle during muscle contractions. The relative importance of HSL and ATGL for breakdown of intramuscular triacylglycerol during muscle contractions is discussed. Collectively, these findings contribute to the understanding of skeletal muscle lipid metabolism during exercise and muscle contractions. Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle contractions. This occurs independently of AMP-activated protein kinase, and data suggest that Ca2+-related signalling is responsible. The FAT/CD36 has an important role; long-chain fatty acid uptake is markedly decreased in FAT/CD36 knockout mice during contractions/exercise compared with wild-type control mice. In skeletal muscle, 98% of the lipase activity is accounted for by adipose triglyceride lipase and hormone-sensitive lipase. Give that inhibition or knockout of hormone-sensitive lipase does not impair lipolysis in muscle during contraction, the data point to an important role of adipose triglyceride lipase in regulation of muscle lipolysis. Although the molecular regulation of the lipases in muscle is not understood, it is speculated that intramuscular lipolysis may be regulated in part by the availability of the plasma concentration of long-chain fatty acids.

31 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851