scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
TL;DR: The three-dimensional solution structure of human heart-type FABP is determined by multi-dimensional heteronuclear NMR spectroscopy and shows that different fatty acids induce distinct conformational states of the protein backbone in this portal region, depending on the chain length of the fatty acid ligand.
Abstract: Recent advances in the characterization of fatty acid-binding proteins (FABPs) by NMR have enabled various research groups to investigate the function of these proteins in aqueous solution. The binding of fatty acid molecules to FABPs, which proceeds through a portal region on the protein surface, is of particular interest. In the present study we have determined the three-dimensional solution structure of human heart-type FABP by multi-dimensional heteronuclear NMR spectroscopy. Subsequently, in combination with data collected on a F57S mutant we have been able to show that different fatty acids induce distinct conformational states of the protein backbone in this portal region, depending on the chain length of the fatty acid ligand. This indicates that during the binding process the protein accommodates the ligand molecule by a "selected-fit" mechanism. In fact, this behaviour appears to be especially pronounced in the heart-type FABP, possibly due to a more rigid backbone structure compared with other FABPs, as suggested by recent NMR relaxation studies. Thus differences in the dynamic behaviours of these proteins may be the key to understanding the variations in ligand affinity and specificity within the FABP family.

31 citations

Journal ArticleDOI
TL;DR: These results provide the first in vivo evidence that these binding sites (C/EBP and GATA) and the novel 15‐bp element contribute to intestine‐specific gene expression and that they are functionally conserved across vertebrate evolution.
Abstract: Intestinal-type fatty acid binding protein (I-FABP) plays an important role in the intracellular binding and trafficking of long chain fatty acids in the intestine. The aim of this study, therefore, was to elucidate the regulation and spatiotemporal expression of the I-FABP gene during zebrafish larval development. We performed in vivo reporter-gene analysis in zebrafish by using a transient and transgenic approach. Green fluorescent protein-reporter analyses revealed that the proximal 192-bp region of the I-FABP promoter is sufficient to direct intestine-specific expression during zebrafish larval development. Functional dissection of a 41-bp region within this 192-bp promoter revealed that one C/EBP and two GATA-like binding sites, along with a novel 15-bp element within it are required for I-FABP gene expression in vivo. In addition, the six consensus sites (CCACATCAGCATGAA) in the 15-bp element are critical for I-FABP gene regulation in the zebrafish gut epithelia. Comparison analyses of the orthologous 15-bp element from mammalian I-FABP genes suggests that these mammalian elements are functionally equivalent to the zebrafish 15 element. These results provide the first in vivo evidence that these binding sites (C/EBP and GATA) and the novel 15-bp element contribute to intestine-specific gene expression and that they are functionally conserved across vertebrate evolution.

31 citations

Journal ArticleDOI
TL;DR: The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low μM concentrations of octanoysl-coA, and the results support the possibility that the acyl- CoA binding ability of acyl)-CoA binding protein and of fatty acid binding protein have a role in acyl -CoA metabolismin vivo.
Abstract: The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low μM concentrations of octanoyl-CoA. However, even a large excess (500 μM) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low μM concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.

31 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the omega-oxidative pathway is prominent in brain and could play a role in brain fatty acid metabolism.
Abstract: The accumulation of dicarboxylic acids is a prominent feature of inborn and toxin induced disorders of fatty acid metabolism which are characterized by impaired mental status. The formation of dicarboxylic acids is also a critical step in liver in the induction of intracellular fatty acid binding proteins and the proliferation of peroxisomes. In order to understand what potential roles dicarboxylic acids have in brain, we examined the extent of omega-oxidation in rat brain. Homogenates of rat brain catalyze the omega-oxidation of monocarboxylic acids with a specific activity of between 0.87 and 5.23 nmol/mg of post-mitochondrial protein/h, depending on the substrate. The activity is remarkably high, between one-fourth and 4 times the activity found in rat liver, depending on the chain length of the substrate. Specific activity increases with increasing chain length of the substrate. The omega-oxidation of palmitic acid is linear over a range of 0.125-3.0 mg of protein and 5-50 microM substrate for up to 45 minutes of incubation. The product of omega-oxidation in brain is almost exclusively dicarboxylic acid. Cultured rat neurons, astrocytes, and oligodendrocytes all contain omega-oxidation activity. Western blots of rat brain homogenate demonstrate a protein that is recognized by antibody to rat liver CYP4A omega-hydroxylase. These results demonstrate that the omega-oxidative pathway is prominent in brain and could play a role in brain fatty acid metabolism.

31 citations

Journal ArticleDOI
TL;DR: The crystal structure of HP1286 suggests that its function could be that of sequestering specific fatty acids or amides from the environment, either to supply the bacterium with the fatty acids necessary for its metabolism, or to protect and detoxify it from the detergent‐like antimicrobial activity of fatty acids that are eventually present in the external milieu.
Abstract: HP1286 from Helicobacter pylori is among the proteins that play a relevant role in bacterial colonization and persistence in the stomach. Indeed, it was demonstrated to be overexpressed under acidic stress conditions, together with other essential virulence factors. Here we describe its crystal structure, determined at 2.1 A resolution. The molecular model, a dimer characterized by two-fold symmetry, shows that HP1286 structurally belongs to the YceI-like protein family, which in turn is characterized by the lipocalin fold. The latter characterizes proteins possessing an internal cavity with the function of binding and/or transport of amphiphilic molecules. Surprisingly, a molecule of erucamide was found bound in the internal cavity of each monomer of recombinant HP1286, cloned and expressed in an Escherichia coli heterologous system. The shape and length of the cavity indicate that, at variance with other members of the family, HP-YceI has a binding specificity for amphiphilic compounds with a linear chain of about 22 carbon atoms. These features, along with the fact that the protein is secreted by the bacterium and is involved in adaptation to an acidic environment, suggest that its function could be that of sequestering specific fatty acids or amides from the environment, either to supply the bacterium with the fatty acids necessary for its metabolism, or to protect and detoxify it from the detergent-like antimicrobial activity of fatty acids that are eventually present in the external milieu. Structured digital abstract • MINT-7557675: HP 1286 (uniprotkb:O25873) and HP 1286 (uniprotkb:O25873) bind (MI:0407) by x-ray crystallography (MI:0114)

31 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851