scispace - formally typeset
Search or ask a question
Topic

Fatty acid-binding protein

About: Fatty acid-binding protein is a research topic. Over the lifetime, 1721 publications have been published within this topic receiving 81530 citations. The topic is also known as: FABP.


Papers
More filters
Journal ArticleDOI
07 Jul 1972-Science
TL;DR: A protein of molecular weight ∼ 12,000 which binds long-chain fatty acids and certain other lipids has been identified in cytosol of intestinal mucosa, liver, myocardium, adipose tissue, and kidney and appears to be identical with the smaller of two previously described cytoplasmic anion-binding proteins.
Abstract: A protein of molecular weight approximately 12,000 which binds long-chain fatty acids and certain other lipids has been identified in cytosol of intestinal mucosa, liver, myocardium, adipose tissue, and kidney. Binding is noncovalent and is greater for unsaturated than for saturated and medium-chain fatty acids. This protein appears to be identical with the smaller of two previously described cytoplasmic anion-binding proteins. Binding of long-chain fatty acids by this protein is greater than that of other anions tested, including sulfobromophthalein, and does not depend on negative charge alone. The presence of this binding protein may explain previously observed differences in intestinal absorption among fatty acids, and the protein may participate in the utilization of long-chain fatty acids by many mammalian tissues.

660 citations

Journal ArticleDOI
TL;DR: The observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl -CoA binding protein and that acetyl- coA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of Acyl- CoA indicate that long- chain acyl
Abstract: The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.

653 citations

Journal ArticleDOI
TL;DR: Because of their physiological properties some FABP genes were tested in order to identify mutations altering lipid metabolism, and the porcine A-FABP andH-F ABP were studied as candidate genes with major effect on fatness traits.
Abstract: Fatty acid-binding proteins (FABPs) are members of the superfamily of lipid-binding proteins (LBP). So far 9 different FABPs, with tissue-specific distribution, have been identified: L (liver), I (intestinal), H (muscle and heart), A (adipocyte), E (epidermal), Il (ileal), B (brain), M (myelin) and T (testis). The primary role of all the FABP family members is regulation of fatty acid uptake and intracellular transport. The structure of all FABPs is similar — the basic motif characterizing these proteins is β-barrel, and a single ligand (e.g. a fatty acid, cholesterol, or retinoid) is bound in its internal water-filled cavity. Despite the wide variance in the protein sequence, the gene structure is identical. The FABP genes consist of 4 exons and 3 introns and a few of them are located in the same chromosomal region. For example,A-FABP, E-FABP andM-FABP create a gene cluster. Because of their physiological properties some FABP genes were tested in order to identify mutations altering lipid metabolism. Furthermore, the porcineA-FABP andH-FABP were studied as candidate genes with major effect on fatness traits.

651 citations

Journal ArticleDOI
TL;DR: Data from a number of experimental approaches have provided strong support for defining the FABPs as fatty acid transport proteins, and further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by theFABPs.

497 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Inflammation
76.4K papers, 4M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Apoptosis
115.4K papers, 4.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202368
202272
202142
202044
201950
201851