scispace - formally typeset
Search or ask a question
Topic

Fatty acid synthase

About: Fatty acid synthase is a research topic. Over the lifetime, 4162 publications have been published within this topic receiving 182721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.
Abstract: Fatty acid synthase (FASN) catalyses the synthesis of fatty acids, and this synthetic pathway is upregulated in many tumours. How might FASN and increased lipogenesis be involved in cancer, and is FASN a valid therapeutic target? There is a renewed interest in the ultimate role of fatty acid synthase (FASN) — a key lipogenic enzyme catalysing the terminal steps in the de novo biogenesis of fatty acids — in cancer pathogenesis. Tumour-associated FASN, by conferring growth and survival advantages rather than functioning as an anabolic energy-storage pathway, appears to necessarily accompany the natural history of most human cancers. A recent identification of cross-talk between FASN and well-established cancer-controlling networks begins to delineate the oncogenic nature of FASN-driven lipogenesis. FASN, a nearly-universal druggable target in many human carcinomas and their precursor lesions, offers new therapeutic opportunities for metabolically treating and preventing cancer.

2,341 citations

Journal ArticleDOI
TL;DR: Adiponectin was effective in ameliorating hepatomegaly, steatosis, and alanine aminotransferase abnormality associated with nonalcoholic obese, ob/ob mice and could suppress the hepatic production of TNF-alpha and plasma concentrations of this proinflammatory cytokine.
Abstract: Adiponectin has recently been shown to be a promising candidate for the treatment of obesity-associated metabolic syndromes. Replenishment of recombinant adiponectin in mice can decrease hyperglycemia, reverse insulin resistance, and cause sustained weight loss without affecting food intake. Here we report its potential roles in alcoholic and nonalcoholic fatty liver diseases in mice. Circulating concentrations of adiponectin decreased significantly following chronic consumption of high-fat ethanol-containing food. Delivery of recombinant adiponectin into these mice dramatically alleviated hepatomegaly and steatosis (fatty liver) and also significantly attenuated inflammation and the elevated levels of serum alanine aminotransferase. These therapeutic effects resulted partly from the ability of adiponectin to increase carnitine palmitoyltransferase I activity and enhance hepatic fatty acid oxidation, while it decreased the activities of two key enzymes involved in fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase. Furthermore, adiponectin treatment could suppress the hepatic production of TNF-alpha and plasma concentrations of this proinflammatory cytokine. Adiponectin was also effective in ameliorating hepatomegaly, steatosis, and alanine aminotransferase abnormality associated with nonalcoholic obese, ob/ob mice. These results demonstrate a novel mechanism of adiponectin action and suggest a potential clinical application of adiponectin and its agonists in the treatment of liver diseases.

1,239 citations

Journal ArticleDOI
TL;DR: While PUFA production in most microorganisms uses a conventional fatty acid synthase system followed by a series of desaturases and elongases, in Schizochytrium sp.

1,024 citations

Journal ArticleDOI
TL;DR: It is concluded that anandamide acting at hepatic CB(1) contributes to diet-induced obesity and that the FAS pathway may be a common molecular target for central appetitive and peripheral metabolic regulation.
Abstract: Endogenous cannabinoids acting at CB1 receptors stimulate appetite, and CB1 antagonists show promise in the treatment of obesity. CB1–/– mice are resistant to diet-induced obesity even though their caloric intake is similar to that of wild-type mice, suggesting that endocannabinoids also regulate fat metabolism. Here, we investigated the possible role of endocannabinoids in the regulation of hepatic lipogenesis. Activation of CB1 in mice increases the hepatic gene expression of the lipogenic transcription factor SREBP-1c and its targets acetyl-CoA carboxylase-1 and fatty acid synthase (FAS). Treatment with a CB1 agonist also increases de novo fatty acid synthesis in the liver or in isolated hepatocytes, which express CB1. High-fat diet increases hepatic levels of the endocannabinoid anandamide (arachidonoyl ethanolamide), CB1 density, and basal rates of fatty acid synthesis, and the latter is reduced by CB1 blockade. In the hypothalamus, where FAS inhibitors elicit anorexia, SREBP-1c and FAS expression are similarly affected by CB1 ligands. We conclude that anandamide acting at hepatic CB1 contributes to diet-induced obesity and that the FAS pathway may be a common molecular target for central appetitive and peripheral metabolic regulation.

1,020 citations

Journal ArticleDOI
TL;DR: The results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyL, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta- ketoacyL synthases.
Abstract: beta-Ketoacyl synthases involved in the biosynthesis of fatty acids and polyketides exhibit extensive sequence similarity and share a common reaction mechanism, in which the carbanion participating in the condensation reaction is generated by decarboxylation of a malonyl or methylmalonyl moiety; normally, the decarboxylation step does not take place readily unless an acyl moiety is positioned on the active-site cysteine residue in readiness for the ensuing condensation reaction. Replacement of the cysteine nucleophile (Cys-161) with glutamine, in the beta-ketoacyl synthase domain of the multifunctional animal fatty acid synthase, completely inhibits the condensation reaction but increases the uncoupled rate of malonyl decarboxylation by more than 2 orders of magnitude. On the other hand, replacement with Ser, Ala, Asn, Gly, and Thr compromises the condensation reaction without having any marked effect on the decarboxylation reaction. The affinity of the beta-ketoacyl synthase for malonyl moieties, in the absence of acetyl moieties, is significantly increased in the Cys161Gln mutant compared to that in the wild type and is similar to that exhibited by the wild-type beta-ketoacyl synthase in the presence of an acetyl primer. These results, together with modeling studies of the Cys --> Gln mutant from the crystal structure of the Escherichia coli beta-ketoacyl synthase II enzyme, suggest that the side chain carbonyl group of the Gln-161 can mimic the carbonyl of the acyl moiety in the acyl-enzyme intermediate so that the mutant adopts a conformation analogous to that of the acyl-enzyme intermediate. Catalysis of the decarboxylation of malonyl-CoA requires the dimeric form of the Cys161Gln fatty acid synthase and involves prior transfer of the malonyl moiety from the CoA ester to the acyl carrier protein domain and subsequent release of the acetyl product by transfer back to a CoA acceptor. These results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyl, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta-ketoacyl synthases.

1,015 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Gene expression
113.3K papers, 5.5M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Amino acid
124.9K papers, 4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023169
2022257
2021216
2020246
2019235
2018183