scispace - formally typeset
Search or ask a question
Topic

Fatty acid synthesis

About: Fatty acid synthesis is a research topic. Over the lifetime, 4530 publications have been published within this topic receiving 214811 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Studied on the oxidation of oleic and octanoic acids to ketone bodies were carried out in homogenates and in mitochondrial fractions of livers taken from fed and fasted rats, and malonyl-CoA inhibited ketogenesis from the former but not from the latter substrate.
Abstract: Studied on the oxidation of oleic and octanoic acids to ketone bodies were carried out in homogenates and in mitochondrial fractions of livers taken from fed and fasted rats. Malonyl-CoA inhibited ketogenesis from the former but not from the latter substrate. The site of inhibition appeared to be the carnitine acyltransferase I reaction. The effect was specific and easily reversible. Inhibitory concentrations were in the range of values obtained in livers from fed rats by others. It is proposed that malonyl-CoA functions as both precursor for fatty acid synthesis and suppressor of fatty acid oxidation. As such, it might be an important element in the carbohydrate-induced sparing of fatty acid oxidation.

659 citations

Journal ArticleDOI
TL;DR: It is concluded that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.
Abstract: Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in cholesterol and fatty acid synthesis. Here, we show that fasting markedly reduces the amounts of SREBP-1 and -2 in mouse liver nuclei, with corresponding decreases in the mRNAs for SREBP-activated target genes. Refeeding a high carbohydrate/low fat diet resulted in a 4- to 5-fold increase of nuclear SREBP-1 above nonfasted levels, whereas nuclear SREBP-2 protein returned only to the nonfasted level. The hepatic mRNAs for fatty acid biosynthetic enzymes increased 5- to 10-fold above nonfasted levels, a pattern that paralleled the changes in nuclear SREBP-1. The hepatic mRNAs for enzymes involved in cholesterol synthesis returned to the nonfasted level, closely following the pattern of nuclear SREBP-2 regulation. Transgenic mice that overproduce nuclear SREBP-1c failed to show the normal decrease in hepatic mRNA levels for cholesterol and fatty acid synthetic enzymes upon fasting. We conclude that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.

657 citations

Journal ArticleDOI
TL;DR: Tumor cell lines with elevated fatty acid synthase showed commensurate increases in incorporation of [U-14C]acetate into acylglycerols demonstrating that fatty acids synthase increases occur in the context of overall increases in endogenous fatty acid synthesis.
Abstract: OA-519 is a prognostic molecule found in tumor cells from breast cancer patients with markedly worsened prognosis. We purified OA-519 from human breast carcinoma cells, obtained its peptide sequence, and unambiguously identified it as fatty acid synthase through sequence homology and enzymology. Tumor fatty acid synthase is an approximately 270-kDa polypeptide which specifically abolished immunostaining of human breast cancers by anti-OA-519 antibodies. Tumor fatty acid synthase oxidized NADPH in a malonyl-CoA-dependent fashion and synthesized fatty acids composed of 80% palmitate, 10% myristate, and 10% stearate from acetyl-CoA, malonyl-CoA, and NADPH with a specific activity of 624 nmol of NADPH oxidized per min per mg. Tumor cell lines with elevated fatty acid synthase showed commensurate increases in incorporation of [U-14C]acetate into acylglycerols demonstrating that fatty acid synthase increases occur in the context of overall increases in endogenous fatty acid synthesis. Cerulenin inhibited acylglycerol synthesis in tumor cells and fibroblast controls in a dose-dependent fashion and also caused a growth inhibition which generally paralleled the level of endogenous fatty acid synthesis. Supraphysiologic levels of palmitate, 14 microM in dimethyl sulfoxide, significantly reversed the growth inhibition caused by cerulenin at concentrations of up to 5 micrograms/ml, indicating that cerulenin-mediated growth inhibition was due to fatty acid synthase inhibition.

655 citations

Journal ArticleDOI
TL;DR: The observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl -CoA binding protein and that acetyl- coA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of Acyl- CoA indicate that long- chain acyl
Abstract: The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.

653 citations

Journal ArticleDOI
TL;DR: This review focuses on four major areas of research on the fatty acid synthesis pathway of E. coli, and the genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway.

646 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
87% related
Amino acid
124.9K papers, 4M citations
86% related
Peptide sequence
84.1K papers, 4.3M citations
86% related
Gene expression
113.3K papers, 5.5M citations
86% related
Phosphorylation
69.3K papers, 3.8M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202355
202281
2021159
2020148
2019155
2018139