scispace - formally typeset
Search or ask a question
Topic

Fault coverage

About: Fault coverage is a research topic. Over the lifetime, 10153 publications have been published within this topic receiving 161933 citations. The topic is also known as: test coverage.


Papers
More filters
Patent
24 Oct 1990
TL;DR: In this article, an alarm sequence generator is used to test the correctness of a fault model and generate a user interface from which specific components can be selected for failure at specified times.
Abstract: In a real-time diagnostic system, an alarm sequence generator is used to test the correctness of a fault model. The fault model describes an industrial process being monitored. The alarm sequence generator reads the fault model and generates a user interface, from which specific components can be selected for failure at specified times. The alarm sequence generator assembles all alarms that are causally downstream from the selected set of faulty components and determines which alarms should be turned on based on probabilistic and temporal information in the fault model. The timed alarm sequence can be used by an expert to measure the correctness of a particular model, or can be used as input into a diagnostic system to measure the correctness of the diagnostic system.

58 citations

Journal ArticleDOI
TL;DR: A hybrid-SBST methodology for efficient testing of commercial processor cores that effectively uses the advantages of various SBST methodologies is introduced and applies directed RTPG as a supplement to improve overall fault coverage results.
Abstract: In this article, we introduce a hybrid-SBST methodology for efficient testing of commercial processor cores that effectively uses the advantages of various SBST methodologies. Self-test programs based on deterministic structural SBST methodologies combined with verification-based self-test code development and directed RTPG constitute a very effective H-SBST test strategy. The proposed methodology applies directed RTPG as a supplement to improve overall fault coverage results after component-based self-test code development has been performed.

58 citations

Journal ArticleDOI
TL;DR: This scheme identifies a suitable control and data flow from the register-transfer level circuit, and uses it to test each embedded element in the circuit by symbolically justifying its precomputed test set from the system primary inputs to the element inputs and symbolically propagating the output response to the systemPrimary outputs.
Abstract: In this paper, we present a technique for extracting functional (control/data flow) information from register-transfer level controller/data path circuits, and illustrate its use in design for hierarchical testability of these circuits. This scheme does not require any additional behavioral information. It identifies a suitable control and data flow from the register-transfer level circuit, and uses it to test each embedded element in the circuit by symbolically justifying its precomputed test set from the system primary inputs to the element inputs and symbolically propagating the output response to the system primary outputs. When symbolic justification and propagation become difficult, it inserts test multiplexers at suitable points to increase the symbolic controllability and observability of the circuit. These test multiplexers are mostly restricted to off-critical paths. Testability analysis and insertion are completely based on the register-transfer level circuit and the functional information automatically extracted from it, and are independent of the data path bit width owing to their symbolic nature. Furthermore, the data path test set is obtained as a byproduct of this analysis without any further search. Unlike many other design-for-testability techniques, this scheme makes the combined controller-data path very highly testable. It is general enough to handle control-flow-intensive register-transfer level circuits like protocol handlers as well as data-flow intensive circuits like digital filters. It results in low area/delay/power overheads, high fault coverage, and very low test generation times (because it is symbolic and independent of bit width). Also, a large part of our system-level test sets can be applied at speed. Experimental results on many benchmarks show the average area, delay, and power overheads for testability to be 3.1, 1.0, and 4.2%, respectively. Over 99% fault coverage is obtained in most cases with two-four orders of magnitude test generation time advantage over an efficient gate-level sequential test pattern generator and one-three orders of magnitude advantage over an efficient gate-level combinational test pattern generator (that assumes full scan). In addition, the test application times obtained for our method are comparable with those of gate-level sequential test pattern generators, and up to two orders of magnitude smaller than designs using full scan.

58 citations

Proceedings ArticleDOI
21 Aug 2017
TL;DR: QTEP leverages code inspection techniques, i.e., a typical statistic defect prediction model and a typical static bug finder, to detect fault-prone source code and then adapt existing coverage-based TCP algorithms by considering the weighted source code in terms of fault-proneness.
Abstract: Test case prioritization (TCP) is a practical activity in software testing for exposing faults earlier. Researchers have proposed many TCP techniques to reorder test cases. Among them, coverage-based TCPs have been widely investigated. Specifically, coverage-based TCP approaches leverage coverage information between source code and test cases, i.e., static code coverage and dynamic code coverage, to schedule test cases. Existing coverage-based TCP techniques mainly focus on maximizing coverage while often do not consider the likely distribution of faults in source code. However, software faults are not often equally distributed in source code, e.g., around 80% faults are located in about 20% source code. Intuitively, test cases that cover the faulty source code should have higher priorities, since they are more likely to find faults. In this paper, we present a quality-aware test case prioritization technique, QTEP, to address the limitation of existing coverage-based TCP algorithms. In QTEP, we leverage code inspection techniques, i.e., a typical statistic defect prediction model and a typical static bug finder, to detect fault-prone source code and then adapt existing coverage-based TCP algorithms by considering the weighted source code in terms of fault-proneness. Our evaluation with 16 variant QTEP techniques on 33 different versions of 7 open source Java projects shows that QTEP could improve existing coverage-based TCP techniques for both regression and new test cases. Specifically, the improvement of the best variant of QTEP for regression test cases could be up to 15.0% and on average 7.6%, and for all test cases (both regression and new test cases), the improvement could be up to 10.0% and on average 5.0%.

58 citations

Journal ArticleDOI
TL;DR: The issue of test selection with respect to a general distributed test architecture containing distributed interfaces, and a fact that the methods given in the literature cannot ensure the same fault coverage as the corresponding original testing methods is investigated.

58 citations


Network Information
Related Topics (5)
Fault tolerance
26.8K papers, 409.7K citations
85% related
Benchmark (computing)
19.6K papers, 419.1K citations
85% related
Fault detection and isolation
46.1K papers, 641.5K citations
85% related
CMOS
81.3K papers, 1.1M citations
84% related
Logic gate
35.7K papers, 488.3K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202360
2022135
202167
202089
2019120
2018151