scispace - formally typeset
Search or ask a question
Topic

Fault (geology)

About: Fault (geology) is a research topic. Over the lifetime, 26732 publications have been published within this topic receiving 744535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a variety of geomorphic observations were used to place constraints on the kinematics and slip rates of several large faults that parallel the plateau margin of the Sichuan Basin.
Abstract: The steep, high-relief eastern margin of the Tibetan Plateau has undergone rapid Cenozoic cooling and denudation yet shows little evidence for large-magnitude shortening or accommodation generation in the foreland basin. We address this paradox by using a variety of geomorphic observations to place constraints on the kinematics and slip rates of several large faults that parallel the plateau margin. The Beichuan and Pengguan faults are active, dominantly dextral-slip structures that can be traced continuously for up to 200 km along the plateau margin. Both faults offset fluvial fill terraces that yield inheritance-corrected, cosmogenic 10Be exposure ages of <15 kyr, indicating latest Pleistocene activity. The Pengguan fault appears to have been active in the Holocene at two sites along strike. Latest Quaternary apparent throw rates on both faults are variable along strike but are typically <1 mm yr−1. Rates of strike-slip displacement are likely to be several times higher, probably ∼1–10 mm yr−1 but remain poorly constrained. Late Quaternary folding and dextral strike-slip has also occurred along the western margin of the Sichuan Basin, particularly associated with the present-day mountain front. These observations support models for the formation and maintenance of the eastern plateau margin that do not involve major upper crustal shortening. They also suggest that activity on the margin-parallel faults in eastern Tibet may represent a significant seismic hazard to the densely populated Sichuan Basin.

394 citations

Journal ArticleDOI
TL;DR: In this article, the geometry and evolution of exposure-scale relay ramps are described from the Somerset coast, England, and compared with larger scale ramps from elsewhere, and the relay ramps can be classified into four groups based on the degree of interaction and linkage between the overstepping segments; these groups are interpreted as being evolutionary stages.
Abstract: Relay ramps occur between normal fault segments that overstep in map view. The geometry and evolution of exposure-scale relay ramps are described from the Somerset coast, England, and are compared with larger scale ramps from elsewhere. Relay ramps can be classified into four groups based on the degree of interaction and linkage between the overstepping segments; these groups are interpreted as being evolutionary stages. In stage 1, the segments do not interact. Stage 2 involves the reorientation of bedding between two interacting faults to produce a relay ramp. In stage 3, connecting fractures start to break the relay ramp. Stage 4 is when the relay ramp is destroyed to produce a single fault that has an along-strike bend. These evolutionary stages can develop through ti e, but they can also be seen spatially. A branch line between normal faults or an along-strike bend may represent a stage 4 relay, with progressively earlier stages occurring updip or downdip. Characteristic variability in displacement-distance profiles for fault segments and linked faults accompanies the interaction and linkage processes. Displacement transfer by relay ramps is accompanied by steep displacement gradients along fault segments at oversteps. Relay ramps often contribute to a minimum in total fault displacement at a linkage point.

393 citations

Journal ArticleDOI
02 Dec 2011-Science
TL;DR: The difference between bathymetric data acquired before and after the earthquake revealed that the displacement extended out to the axis of the Japan Trench, suggesting that the fault rupture reached the trench axis.
Abstract: We detected and measured coseismic displacement caused by the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (MW) 9.0] by using multibeam bathymetric surveys. The difference between bathymetric data acquired before and after the earthquake revealed that the displacement extended out to the axis of the Japan Trench, suggesting that the fault rupture reached the trench axis. The sea floor on the outermost landward area moved about 50 meters horizontally east-southeast and ~10 meters upward. The large horizontal displacement lifted the sea floor by up to 16 meters on the landward slope in addition to the vertical displacement.

392 citations

Journal ArticleDOI
TL;DR: The Chile earthquake sequence of May 21-22, 1960, was accompanied by linear zones of tectonic warping, including both uplift and subsidence relative to sea level.
Abstract: The Chilean earthquake sequence of May 21–22, 1960, was accompanied by linear zones of tectonic warping, including both uplift and subsidence relative to sea level. The region involved is more than 200 km wide and about 1000 km long, and lies along the continental margin between latitude 37° and 48° S. Significant horizontal strains accompanied the vertical movements in parts of the subsided zone for which triangulation data are available. Displacements were initiated near the northern end of the deformed region during the opening earthquake of the sequence (M s ≅ 7.5) on May 21 at 10h 02m 50s GMT and were extended over the remainder of the region during the culminating shock (M s ≅ 8.5) on May 22 at 19h llm 17s GMT. During the latter event, sudden uplift of adjacent portions of the continental shelf and much or all of the continental slope apparently generated the destructive tsunami that immediately followed the main shock. Available data suggest that the primary fault or zone of faulting along which displacement occurred probably is a complex thrust fault roughly 1000 km long and at least 60 km wide; it dips eastward at a moderate angle beneath the continental margin and intersects the surface on the continental slope. Dip slip required to satisfy the surface displacements is at least 20 m and perhaps as large as 40 m. There is some evidence that there was a minor component of right-lateral slip on the fault plane.

392 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed available morphological, gravity, and rock sample data from the Atlantic Ocean to determine whether consistent structural patterns occur at these discontinuities and to constrain the processes that control the patterns.
Abstract: First-order (transform) and second-order ridge-axis discontinuities create a fundamental segmentation of the lithosphere along mid-ocean ridges, and in slow spreading crust they commonly are associated with exposure of subvolcanic crust and upper mantle. We analyzed available morphological, gravity, and rock sample data from the Atlantic Ocean to determine whether consistent structural patterns occur at these discontinuities and to constrain the processes that control the patterns. The results show that along their older, inside-corner sides, both first-and second-order discontinuities are characterized by thinned crust and/or mantle exposures as well as by irregular fault patterns and a paucity of volcanic features. Crust on young, outside-corner sides of discontinuities has more normal thickness, regular fault patterns, and common volcanic forms. These patterns are consistent with tectonic thinning of crust at inside corners by low-angle detachment faults as previously suggested for transform discontinuities by Dick et al. [1981] and Karson [1990]. Volcanic upper crust accretes in the hanging wall of the detachment, is stripped from the inside-corner footwall, and is carried to the outside comer. Gravity and morphological data suggest that detachment faulting is a relatively continuous, long-lived process in crust spreading at <25–30 mm/yr, that it rnay be intermittent at intermediate rates of 25–40 mm/yr, and that it is unlikely to occur at faster rates. Detachment surfaces are dissected by later, high-angle faults formed during crustal uplift into the rift mountains; these faults can cut through the entire crust and may be the kinds of faults imaged by seismic reflection profiling over Cretaceous North Atlantic crust. Off-axis variations in gravity anomalies indicate that slow spreading crust experiences cyclic magmatic/amagmatic extension and that a typical cycle is about 2 m.y. long. During magmatic phases the footwall of the detachment fault probably exposes lower crustal gabbros, although these rocks locally may have an unconformable volcanic carapace. During amagmatic extension the detachment may dip steeply through the crust, providing a mechanism whereby upper mantle ultramafic rocks can be exhumed very rapidly, perhaps in as little as 0.5 m.y. Together, detachment faulting and cyclic magmatic/amagmatic extension create strongly heterogeneous lithosphere both along and across isochrons in slow spreading ocean crust.

392 citations


Network Information
Related Topics (5)
Subduction
22.4K papers, 1.1M citations
95% related
Lithosphere
14.5K papers, 723.8K citations
94% related
Crust
20.7K papers, 933.1K citations
93% related
Sedimentary rock
30.3K papers, 746.5K citations
91% related
Mantle (geology)
26.1K papers, 1.3M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20234,903
202210,233
20211,417
2020998
2019966