scispace - formally typeset
Search or ask a question
Topic

Fault (geology)

About: Fault (geology) is a research topic. Over the lifetime, 26732 publications have been published within this topic receiving 744535 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The method is able to detect incipient faults and diagnose the locations of faults under masking noise, and provides a health index that tracks the degradation of faults without missing intermittent faults.
Abstract: Bearing faults are the main contributors to the failure of electric motors. Although a number of vibration analysis methods have been developed for the detection of bearing faults, false alarms still result in losses. This paper presents a method that detects bearing faults and monitors the degradation of bearings in electric motors. Based on spectral kurtosis (SK) and cross correlation, the method extracts fault features that represent different faults, and the features are then combined to form a health index using principal component analysis (PCA) and a semisupervised k -nearest neighbor (KNN) distance measure. The method was validated by experiments using a machinery fault simulator and a computer cooling fan motor bearing. The method is able to detect incipient faults and diagnose the locations of faults under masking noise. It also provides a health index that tracks the degradation of faults without missing intermittent faults. Moreover, faulty reference data are not required.

367 citations

Journal ArticleDOI
TL;DR: In this article, the geometrical consequences of displacements along strike-slip faults with respect to the associated deformation, terminal and otherwise, are discussed in detail, based on model experiments and by field examples.

365 citations

Journal ArticleDOI
TL;DR: The Alborz range, northern Iran, deforms by strain partitioning of oblique shortening onto range-parallel left-lateral strike-slip and thrust faults.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined a reliable framework of active faults in the southern Umbria and AbruzziApennines and showed that activation of the investigated faults may result in earthquakes ofM = 6.5-7.5 which originated in the investigated Apennine sector.
Abstract: Quaternary tectonics and paleoseismologicalinvestigations have defined a reliable framework ofactive faults in the southern Umbria and AbruzziApennines. Two sets of NW–SE to NNW–SSE trending, 16to 33 km-long, normal and normal-oblique faults orfault systems have caused the displacement of LatePleistocene–Holocene deposits and landforms within theinvestigated sector. Available data on verticaloffsets indicate that both Late Pleistocene–Holoceneand Quaternary (since the later part of the EarlyPleistocene; 0.9–1 Ma) slip rates range between 0.4and 1.2 mm/yr (range 0.6–0.8 mm/yr preferred).Paleoseismological investigations show that recurrenceintervals for surface faulting events are alwaysgreater than 1,000 years and are usually greater than2,000 years. Both paleoseismological data andlong-term seismicity show that activation of theinvestigated faults may result in earthquakes ofM = 6.5–7.0. The extension rate across the two sets ofprimary faults ranges between 0.7 and 1.6 mm/yr.Horizontal seismic strain has been calculated to be0.5–0.6 mm/yr, based on the summation of the seismicmoment of M > 5.3 earthquakes which have affected theinvestigated area since 1200 AD. This value may belower than that inferred through geological data,probably because the seismological record reliable forthe addition of the seismic moments covers a too shorttime window (about 800 years) to be consideredrepresentative of the tectonic activity in theinvestigated area. This conclusion iscorroborated by the large recurrence intervalper fault (>1,000–2,000 years) inferred frompaleoseismological analysis. A comparison of theactive-fault framework and historical-seismicitydistribution indicates that the entire eastern set ofactive faults has likely not been activated since 1000AD, thus indicating that the elapsed time since thelast activation for several faults of the investigatedarea may be greater than 1,000 years. In terms ofhazard, the highest probability of activation isrelated to the eastern set faults, due to theobservation that the elapsed time for some of thesefaults may be similar to the recurrence interval. Asan example, paleoseismological andarchaeoseismological data indicate that the elapsedtime for the Mt. Vettore and Mt. Morrone Faults may begreater than 1,650 and 1,850 years, respectively.These data may have significant implications for riskrelated to a number of towns in central Italy and tothe city of Rome. As for the latter, in fact,monumental heritage has suffered significant damagedue to earthquakes of M > 6.5 which originated in theinvestigated Apennine sector.

364 citations

Journal ArticleDOI
TL;DR: Fault displacements measured in coal mines and from seismic data are used to develop a model describing the near-field displacements associated with an ideal, single normal fault as mentioned in this paper.
Abstract: Fault displacements measured in coal mines and from seismic data are used to develop a model describing the near-field displacements associated with an ideal, single normal fault. Displacement on a fault surface ranges from a maximum at the center of the fault to zero at the edge or tip-line. The tip-line is elliptical, with the shorter axis of the ellipse parallel to the displacement direction. Contours of equal displacement form concentric ellipses centered on the point of maximum displacement. Displacement gradients vary with fault size and with mechanical properties of host rock; fault radius to maximum displacement ratios range from 5 to 500. Plotting of displacement contour diagrams and knowledge of displacement gradients are useful in interpreting seismic reflectio data, both for quality control of interpretations and for quantitative extrapolation of limited data. Displacements associated with faulting decrease systematically with increasing distance along the normal to the fault surface; this decrease is seen as reverse drag in both hanging wall and footwall. Hanging-wall rollover and tilting of the reflectors cannot be used to distinguish listric from planar normal faults; even where fault-block rotation can be demonstrated, neither listric fault geometry nor a flat detachment surface is geometrically necessary. Because faulting is accommodated by ductile deformation, rigid fault-bounded blocks cannot exist except in some special circumstances related to a free surface. The displacements within the rock volume affected by a single fault are not simply related to regional extension. Apparent horizontal extension by faulting varies from one layer to another, and a significant proportion of the extension in a basin may be due to ductile deformation.

364 citations


Network Information
Related Topics (5)
Subduction
22.4K papers, 1.1M citations
95% related
Lithosphere
14.5K papers, 723.8K citations
94% related
Crust
20.7K papers, 933.1K citations
93% related
Sedimentary rock
30.3K papers, 746.5K citations
91% related
Mantle (geology)
26.1K papers, 1.3M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20234,903
202210,233
20211,417
2020998
2019966