scispace - formally typeset
Search or ask a question
Topic

Fault indicator

About: Fault indicator is a research topic. Over the lifetime, 10057 publications have been published within this topic receiving 143482 citations. The topic is also known as: FCI & power line fault indicator.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a robust fault diagnostic method for multiple insulated gate bipolar transistors (IGBTs) open-circuit faults and current sensor faults in three-phase permanent magnet synchronous motors (PMSMs) is presented.
Abstract: Permanent magnet synchronous motors (PMSMs) drives using three-phase voltage-source inverters (VSIs) are currently used in many industrial applications. The reliability of VSIs is one of the most important factors to improve the reliability and availability levels of the drive. Accordingly, this paper presents a robust fault diagnostic method for multiple insulated gate bipolar transistors (IGBTs) open-circuit faults and current sensor faults in three-phase PMSM drives. The proposed observer-based algorithm relies on an adaptive threshold for fault diagnosis. Current sensor and open-circuit faults can be distinguished and the faulty sensors and/or power semiconductors are effectively isolated. The proposed technique is robust to machine parameters and load variations. Several simulation and experimental results using a vector-controlled PMSM drive are presented, showing the diagnostic algorithm robustness against false alarms and its effectiveness in both IGBTs and current sensors fault diagnosis.

171 citations

Journal ArticleDOI
TL;DR: In this article, a fault detection and diagnostics (FDD) and fault tolerant control (FTC) strategy for nonlinear stochastic systems in closed loops based on a continuous stirred tank reactor (CSTR) is presented.
Abstract: A novel simultaneous fault detection and diagnostics (FDD) and fault tolerant control (FTC) strategy for nonlinear stochastic systems in closed loops based on a continuous stirred tank reactor (CSTR) is presented. The purpose of control is to track the reactant concentration setpoint. Instead of output feedback we propose here to use proportional-integral-derivative (PID) state feedback, which is shown essential to achieve FTC against sensor faults. A new concept of "equivalent bias" is proposed to model the sensor faults. Both the states and the equivalent bias are on-line estimated by a pseudo separate-bias estimation algorithm. The estimated equivalent bias is then evaluated via a modified Bayes' classification based algorithm to detect and diagnose the sensor faults. Many kinds of sensor faults are tested by Monte Carlo simulations, which demonstrate that the proposed strategy has definite fault tolerant ability against sensor faults, moreover the sensor faults can be on-line detected, isolated, and estimated simultaneously.

171 citations

Journal ArticleDOI
TL;DR: An integrated framework combining fault classification and location is proposed by applying an innovative machine-learning algorithm: the summation-wavelet extreme learning machine (SW-ELM) that integrates feature extraction in the learning process and is successfully applied to transmission line fault diagnosis.
Abstract: Accurate and timely diagnosis of transmission line faults is key for reliable operations of power systems. Existing fault-diagnosis methods rely on expert knowledge or extensive feature extraction, which is also highly dependent on expert knowledge. Additionally, most methods for fault diagnosis of transmission lines require multiple separate subalgorithms for fault classification and location performing each function independently and sequentially. In this research, an integrated framework combining fault classification and location is proposed by applying an innovative machine-learning algorithm: the summation-wavelet extreme learning machine (SW-ELM) that integrates feature extraction in the learning process. As a further contribution, an extension of the SW-ELM, i.e., the summation-Gaussian extreme learning machine (SG-ELM), is proposed and successfully applied to transmission line fault diagnosis. SG-ELM is fully self-learning and does not require ad-hoc feature extraction, making it deployable with minimum expert subjectivity. The developed framework is applied to three transmission-line topologies without any prior parameter tuning or ad-hoc feature extraction. Evaluations on a simulated dataset show that the proposed method can diagnose faults within a single cycle, remain immune to fault resistance and inception angle variation, and deliver high accuracy for both tasks of fault diagnosis: fault type classification and fault location estimation.

168 citations

Journal ArticleDOI
01 Jan 1999
TL;DR: In this paper, a fault locator unit is used to capture the high-frequency voltage transient signal generated by faults on the distribution line/cable, and the travelling time of the highfrequency components are used to determine the fault position.
Abstract: A technique is presented for accurate fault location on distribution overhead lines and underground cables. A specially designed fault locator unit is used to capture the high-frequency voltage transient signal generated by faults on the distribution line/cable. The travelling time of the high-frequency components is used to determine the fault position. The technique is insensitive to fault type, fault resistance, fault inception angle and system source configuration, and is able to offer very high accuracy in fault location in a distribution system.

168 citations

Journal ArticleDOI
TL;DR: In this article, a model-based fault detection and identification (FDI) method for switching power converters using a modelbased state estimator approach is presented. But the proposed FDI approach is general in that it can be used to detect and identify arbitrary faults in components and sensors in a broad class of switches.
Abstract: We present the analysis, design, and experimental validation of a model-based fault detection and identification (FDI) method for switching power converters using a model-based state estimator approach. The proposed FDI approach is general in that it can be used to detect and identify arbitrary faults in components and sensors in a broad class of switching power converters. The FDI approach is experimentally demonstrated on a nanogrid prototype with a 380-V dc distribution bus. The nanogrid consists of four different switching power converters, including a buck converter, an interleaved boost converter, a single-phase rectifier, and a three-phase inverter. We construct a library of fault signatures for possible component and sensor faults in all four converters. The FDI algorithm successfully achieves fault detection in under 400 $\mu$ s and fault identification in under 10 ms for faults in each converter. The proposed FDI approach enables a flexible and scalable solution for improving fault tolerance and awareness in power electronics systems.

167 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
91% related
Voltage
296.3K papers, 1.7M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Control system
129K papers, 1.5M citations
84% related
Wind power
99K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022215
202127
202061
2019116
2018160