scispace - formally typeset
Search or ask a question
Topic

Fault indicator

About: Fault indicator is a research topic. Over the lifetime, 10057 publications have been published within this topic receiving 143482 citations. The topic is also known as: FCI & power line fault indicator.


Papers
More filters
Book
01 Dec 2009
TL;DR: Fault Location on Power Lines as discussed by the authors describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks, including both the design and application standpoints.
Abstract: Electric power systems will always be exposed to the failure of their components. When a fault occurs on a line, it is crucial for the fault location to be identified as accurately as possible, allowing the damage caused by the fault to be repaired quickly before the line is put back into service. Fault Location on Power Lines enables readers to pinpoint the location of a fault on power lines following a disturbance. If a fault location cannot be identified quickly and this causes prolonged line outage during a period of peak load, severe economic losses may occur and reliability of service may be questioned. The growth in size and complexity of power systems has increased the impact of failure to locate a fault and therefore heightened the importance of fault location research studies, attracting widespread attention among researchers in recent years. Fault location cannot be truly understood, applied, set, tested and analysed without a deep and detailed knowledge of the interiors of fault locators. Consequently, the nine chapters are organised according to the design of different locators. The authors do not simply refer the reader to manufacturers documentation, but instead have compiled detailed information to allow for in-depth comparison. Fault Location on Power Lines describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks. An application of artificial intelligence in this field is also presented, to help the reader to understand all aspects of fault location on overhead lines, including both the design and application standpoints. Professional engineers, researchers, and postgraduate and undergraduate students will find Fault Location on Power Lines a valuable resource, which enables them to reproduce complete algorithms of digital fault locators in their basic forms.

445 citations

Proceedings ArticleDOI
04 Oct 1992
TL;DR: In this article, the authors describe a systematic investigation into the various fault modes of a voltage-fed PWM inverter system for induction motor drives, and a preliminary mathematical analysis has been made for the key fault types, namely, input supply single line to ground fault, rectifier diode short circuit, inverter transistor base drive open, and inverters transistor short-circuit conditions.
Abstract: The reliability of power electronics systems is of paramount importance in industrial, commercial, aerospace, and military applications. The knowledge about the fault mode behavior of a converter system is extremely important from the standpoint of improved system design, protection, and fault tolerant control. This paper describes a systematic investigation into the various fault modes of a voltage-fed PWM inverter system for induction motor drives. After identifying all the fault modes, a preliminary mathematical analysis has been made for the key fault types, namely, input supply single line to ground fault, rectifier diode short circuit, inverter transistor base drive open, and inverter transistor short-circuit conditions. The predicted fault performances are then substantiated by simulation study. The study has been used to determine stresses in power circuit components and to evaluate satisfactory post-fault steady-state operating regions. The results are equally useful for better protection system design and easy fault diagnosis. They will be used to improve system reliability by using fault tolerant control. >

431 citations

Journal ArticleDOI
TL;DR: In this paper, an online particle-filtering-based framework for fault diagnosis and failure prognosis in non-linear, non-Gaussian systems is proposed, which considers the implementation of two autonomous modules: a fault detection and identification (FDI) module uses a hybrid state-space model of the plant and a PF algorithm to estimate the state probability density function (pdf) of the system and calculates the probability of a fault condition in realtime.
Abstract: This paper introduces an on-line particle-filtering (PF)-based framework for fault diagnosis and failure prognosis in non-linear, non-Gaussian systems. This framework considers the implementation of two autonomous modules. A fault detection and identification (FDI) module uses a hybrid state-space model of the plant and a PF algorithm to estimate the state probability density function (pdf) of the system and calculates the probability of a fault condition in realtime. Once the anomalous condition is detected, the available state pdf estimates are used as initial conditions in prognostic routines. The failure prognostic module, on the other hand, predicts the evolution in time of the fault indicator and computes the pdf of the remaining useful life (RUL) of the faulty subsystem, using a non-linear state-space model (with unknown time-varying parameters) and a PF algorithm that updates the current state estimate. The outcome of the prognosis module provides information about the precision and accuracy of long-term predictions, RUL expectations and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary gear plate are used to validate the proposed approach.

428 citations

Journal ArticleDOI
TL;DR: The authors present a model, called a transition fault, which when used with parallel-pattern, single-fault propagation, is an efficient way to simulate delay faults and shows that delay fault simulation can be done of random patterns in less than 10% more time than needed for a stuck fault simulation.
Abstract: Delay fault testing is becoming more important as VLSI chips become more complex. Components that are fragments of functions, such as those in gate-array designs, need a general model of a delay fault and a feasible method of generating test patterns and simulating the fault. The authors present such a model, called a transition fault, which when used with parallel-pattern, single-fault propagation, is an efficient way to simulate delay faults. The authors describe results from 10 benchmark designs and discuss add-ons to a stuck fault simulator to enable transition fault simulation. Their experiments show that delay fault simulation can be done of random patterns in less than 10% more time than needed for a stuck fault simulation.

427 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a test benchmark model for the evaluation of fault detection and accommodation schemes for a wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system.
Abstract: This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system. Since it is a system-level model, converter and pitch system models are simplified because these are controlled by internal controllers working at higher frequencies than the system model. The model represents a three-bladed pitch-controlled variable-speed wind turbine with a nominal power of 4.8 MW. The fault detection and isolation (FDI) problem was addressed by several teams, and five of the solutions are compared in the second part of this paper. This comparison relies on additional test data in which the faults occur in different operating conditions than in the test data used for the FDI design.

370 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
91% related
Voltage
296.3K papers, 1.7M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Control system
129K papers, 1.5M citations
84% related
Wind power
99K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022215
202127
202061
2019116
2018160