Topic
Feature detection (computer vision)
About: Feature detection (computer vision) is a research topic. Over the lifetime, 25605 publications have been published within this topic receiving 516757 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.
Abstract: Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative implementation is shown which successfully computes the optical flow for a number of synthetic image sequences. The algorithm is robust in that it can handle image sequences that are quantized rather coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. Examples are included where the assumption of smoothness is violated at singular points or along lines in the image.
10,249 citations
[...]
17 Jun 2006
TL;DR: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence that exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories.
Abstract: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting "spatial pyramid" is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories. The spatial pyramid framework also offers insights into the success of several recently proposed image descriptions, including Torralbas "gist" and Lowes SIFT descriptors.
8,415 citations
[...]
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.
Abstract: This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q 2003 Elsevier B.V. All rights reserved.
6,465 citations
Book•
[...]
01 Dec 2003
TL;DR: 1. Fundamentals of Image Processing, 2. Intensity Transformations and Spatial Filtering, and 3. Frequency Domain Processing.
Abstract: 1. Introduction. 2. Fundamentals. 3. Intensity Transformations and Spatial Filtering. 4. Frequency Domain Processing. 5. Image Restoration. 6. Color Image Processing. 7. Wavelets. 8. Image Compression. 9. Morphological Image Processing. 10. Image Segmentation. 11. Representation and Description. 12. Object Recognition.
6,204 citations
Book•
[...]
01 Jan 1993
TL;DR: The digitized image and its properties are studied, including shape representation and description, and linear discrete image transforms, and texture analysis.
Abstract: List of Algorithms. Preface. Possible Course Outlines. 1. Introduction. 2. The Image, Its Representations and Properties. 3. The Image, Its Mathematical and Physical Background. 4. Data Structures for Image Analysis. 5. Image Pre-Processing. 6. Segmentation I. 7. Segmentation II. 8. Shape Representation and Description. 9. Object Recognition. 10. Image Understanding. 11. 3d Geometry, Correspondence, 3d from Intensities. 12. Reconstruction from 3d. 13. Mathematical Morphology. 14. Image Data Compression. 15. Texture. 16. Motion Analysis. Index.
5,344 citations