scispace - formally typeset
Search or ask a question
Topic

Feature vector

About: Feature vector is a research topic. Over the lifetime, 48889 publications have been published within this topic receiving 954464 citations. The topic is also known as: feature space.


Papers
More filters
Journal ArticleDOI
TL;DR: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina based on extraction of image ridges, which coincide approximately with vessel centerlines, which is compared with two recently published rule-based methods.
Abstract: A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. . The results show that our method is significantly better than the two rule-based methods (p<0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.

3,416 citations

Posted Content
Quoc V. Le1, Tomas Mikolov1
TL;DR: The authors proposed paragraph vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents, and achieved new state-of-the-art results on several text classification and sentiment analysis tasks.
Abstract: Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.

3,317 citations

Proceedings Article
Jane Bromley1, Isabelle Guyon1, Yann LeCun1, E. Sackinger1, Roopak Shah1 
29 Nov 1993
TL;DR: An algorithm for verification of signatures written on a pen-input tablet based on a novel, artificial neural network called a "Siamese" neural network, which consists of two identical sub-networks joined at their outputs.
Abstract: This paper describes an algorithm for verification of signatures written on a pen-input tablet. The algorithm is based on a novel, artificial neural network, called a "Siamese" neural network. This network consists of two identical sub-networks joined at their outputs. During training the two sub-networks extract features from two signatures, while the joining neuron measures the distance between the two feature vectors. Verification consists of comparing an extracted feature vector with a stored feature vector for the signer. Signatures closer to this stored representation than a chosen threshold are accepted, all other signatures are rejected as forgeries.

2,980 citations

Proceedings ArticleDOI
Tin Kam Ho1
14 Aug 1995
TL;DR: In this article, the authors proposed a method to construct tree-based classifiers whose capacity can be arbitrarily expanded for increases in accuracy for both training and unseen data, which can be monotonically improved by building multiple trees in different subspaces of the feature space.
Abstract: Decision trees are attractive classifiers due to their high execution speed. But trees derived with traditional methods often cannot be grown to arbitrary complexity for possible loss of generalization accuracy on unseen data. The limitation on complexity usually means suboptimal accuracy on training data. Following the principles of stochastic modeling, we propose a method to construct tree-based classifiers whose capacity can be arbitrarily expanded for increases in accuracy for both training and unseen data. The essence of the method is to build multiple trees in randomly selected subspaces of the feature space. Trees in, different subspaces generalize their classification in complementary ways, and their combined classification can be monotonically improved. The validity of the method is demonstrated through experiments on the recognition of handwritten digits.

2,957 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a bottom-up and top-down attention mechanism was proposed to enable attention to be calculated at the level of objects and other salient image regions, which achieved state-of-the-art results on the MSCOCO test server.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,904 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
97% related
Convolutional neural network
74.7K papers, 2M citations
95% related
Deep learning
79.8K papers, 2.1M citations
95% related
Image segmentation
79.6K papers, 1.8M citations
94% related
Artificial neural network
207K papers, 4.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023335
2022845
20212,729
20203,913
20194,490
20183,597