scispace - formally typeset
Search or ask a question
Topic

Feed forward

About: Feed forward is a research topic. Over the lifetime, 20715 publications have been published within this topic receiving 310388 citations.


Papers
More filters
Journal Article

4,293 citations

Book
16 Aug 1989
TL;DR: This book discusses the development of Empirical Models from Process Data, Dynamic Behavior of First-Order and Second-Order Processes, and Dynamic Response Characteristics of More Complicated Processes.
Abstract: PART ONE: INTRODUCTORY CONCEPTS.1. Introduction to Process Control.2. Theoretical Models of Chemical Processes.PART TWO: DYNAMIC BEHAVIOR OF PROCESSES.3. Laplace Transforms.4. Transfer Function and State-Space Models.5. Dynamic Behavior of First-Order and Second-Order Processes.6. Dynamic Response Characteristics of More Complicated Processes.7. Development of Empirical Models from Process Data.PART THREE: FEEDBACK AND FEEDFORWARD CONTROL.8. Feedback Controllers.9. Control System Instrumentation.10. Overview of Control System Design.11. Dynamic Behavior and Stability of Closed-Loop Control Systems.12. PID Controller Design, Tuning, and Troubleshooting.13. Frequency Response Analysis.14. Control System Design Based on Frequency Response Analysis.15. Feedforward and Radio Control.PART FOUR: ADVANCED PROCESS CONTROL.16. Enhanced Single-Loop Control Strategies.17. Digital Sampling, Filtering, and Control.18. Multiloop and Multivariable Control.19. Real-Time Optimization.20. Model Predictive Control.21. Process Monitoring.22. Batch Process Control.23. Introduction to Plantwide Control.24. Plantwide Control System Design .Appendix A: Digital Process Control Systems: Hardware and Software.Appendix B: Review of Thermodynamics Concepts for Conservation Equations.Appendix C: Use of MATLAB in Process Control.Appendix D: Contour Mapping and the Principle of the Argument.Appendix E: Dynamic Models and Parameters Used for Plantwide Control Chapters.

2,285 citations

Proceedings ArticleDOI
01 Dec 2012
TL;DR: An introduction to event- and self-triggered control systems where sensing and actuation is performed when needed and how these control strategies can be implemented using existing wireless communication technology is shown.
Abstract: Recent developments in computer and communication technologies have led to a new type of large-scale resource-constrained wireless embedded control systems. It is desirable in these systems to limit the sensor and control computation and/or communication to instances when the system needs attention. However, classical sampled-data control is based on performing sensing and actuation periodically rather than when the system needs attention. This paper provides an introduction to event- and self-triggered control systems where sensing and actuation is performed when needed. Event-triggered control is reactive and generates sensor sampling and control actuation when, for instance, the plant state deviates more than a certain threshold from a desired value. Self-triggered control, on the other hand, is proactive and computes the next sampling or actuation instance ahead of time. The basics of these control strategies are introduced together with a discussion on the differences between state feedback and output feedback for event-triggered control. It is also shown how event- and self-triggered control can be implemented using existing wireless communication technology. Some applications to wireless control in process industry are discussed as well.

1,642 citations

Journal ArticleDOI
22 Jun 1983
TL;DR: In this paper, the authors present a methodology of feedback control to achieve accurate tracking for a class of nonlinear time-varying systems in the presence of disturbances and parameter variations.
Abstract: A methodology is presented of feedback control to achieve accurate tracking for a class of nonlinear time-varying systems in the presence of disturbances and parameter variations. The methodology uses in its idealized form piecewise continuous feedback control laws, resulting in the state trajectory `sliding' along a discontinuity surface in the state space. The idealized form of the methodology results in perfect tracking of the required signals; however certain non-idealities associated with its implementation cause the trajectory to 'chatter' along the sliding surface resulting in the generation of an undesirable high-frequency component which may excite high-frequency unmodelled dynamics of the control systems. To rectify this situation, it is shown how continuous control laws which approximate the discontinuous control law may be used to obtain disturbance and parameter variation insensitive tracking. At the same time, the continuous control laws decrease the extent of unwanted high-frequency signals.

1,636 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
91% related
Control system
129K papers, 1.5M citations
91% related
Robustness (computer science)
94.7K papers, 1.6M citations
90% related
Artificial neural network
207K papers, 4.5M citations
88% related
Optimization problem
96.4K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023646
20221,244
2021648
2020890
20191,044